Nepal Suruchi, Maaß Sandra, Grasso Stefano, Cavallo Francis M, Bartel Jürgen, Becher Dörte, Bathoorn Erik, van Dijl Jan Maarten
University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands.
Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany.
Antibiotics (Basel). 2021 Apr 28;10(5):501. doi: 10.3390/antibiotics10050501.
Gram-negative bacteria belonging to the complex are increasingly implicated in difficult-to-treat nosocomial infections, as exemplified by a recently characterized highly carbapenem-resistant clinical isolate with sequence type (ST) 232. While mechanisms of carbapenem resistance are well-understood, little is known about the responses of highly drug-resistant bacteria to these antibiotics. Our present study was therefore aimed at charting the responses of the ST232 isolate to the carbapenem imipenem, using a 'stable isotope labeling of amino acids in cell culture' approach for quantitative mass spectrometry. This unveiled diverse responses of ST232 to imipenem, especially altered levels of proteins for cell wall biogenesis, central carbon metabolism, respiration, iron-sulfur cluster synthesis, and metal homeostasis. These observations suggest a scenario where imipenem-challenged bacteria reduce metabolic activity to save resources otherwise used for cell wall biogenesis, and to limit formation of detrimental reactive oxygen species at the cytoplasmic membrane due to respiration and Fenton chemistry. We consider these observations important, because knowing the adaptive responses of a highly resistant bacterium of the complex to last-resort antibiotics, such as imipenem, provides a 'sneak preview' into the future development of antibiotic resistance in this emerging group of pathogens.
属于该菌属的革兰氏阴性菌越来越多地与难治性医院感染有关,最近鉴定出的序列类型为232(ST232)的高度耐碳青霉烯临床分离株就是一个例证。虽然碳青霉烯耐药机制已为人熟知,但对于高度耐药细菌对这些抗生素的反应却知之甚少。因此,我们目前的研究旨在利用“细胞培养中氨基酸的稳定同位素标记”方法进行定量质谱分析,描绘ST232分离株对碳青霉烯类亚胺培南的反应。这揭示了ST232对亚胺培南的多种反应,特别是细胞壁生物合成、中心碳代谢、呼吸作用、铁硫簇合成和金属稳态相关蛋白质水平的改变。这些观察结果表明,在亚胺培南作用下,细菌会降低代谢活性,以节省原本用于细胞壁生物合成的资源,并限制由于呼吸作用和芬顿化学反应在细胞质膜上形成有害的活性氧物种。我们认为这些观察结果很重要,因为了解该菌属中一种高度耐药细菌对亚胺培南等最后手段抗生素的适应性反应,能让我们“抢先预览”这一新兴病原体群体中抗生素耐药性的未来发展。