Suppr超能文献

利用机器学习预测前往急诊科就诊的发热婴幼儿侵袭性细菌感染

Using Machine Learning to Predict Invasive Bacterial Infections in Young Febrile Infants Visiting the Emergency Department.

作者信息

Chiu I-Min, Cheng Chi-Yung, Zeng Wun-Huei, Huang Ying-Hsien, Lin Chun-Hung Richard

机构信息

Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.

Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

出版信息

J Clin Med. 2021 Apr 26;10(9):1875. doi: 10.3390/jcm10091875.

Abstract

BACKGROUND

The aim of this study was to develop and evaluate a machine learning (ML) model to predict invasive bacterial infections (IBIs) in young febrile infants visiting the emergency department (ED).

METHODS

This retrospective study was conducted in the EDs of three medical centers across Taiwan from 2011 to 2018. We included patients age in 0-60 days who were visiting the ED with clinical symptoms of fever. We developed three different ML algorithms, including logistic regression (LR), supportive vector machine (SVM), and extreme gradient boosting (XGboost), comparing their performance at predicting IBIs to a previous validated score system (IBI score).

RESULTS

During the study period, 4211 patients were included, where 126 (3.1%) had IBI. A total of eight, five, and seven features were used in the LR, SVM, and XGboost through the feature selection process, respectively. The ML models can achieve a better AUROC value when predicting IBIs in young infants compared with the IBI score (LR: 0.85 vs. SVM: 0.84 vs. XGBoost: 0.85 vs. IBI score: 0.70, -value < 0.001). Using a cost sensitive learning algorithm, all ML models showed better specificity in predicting IBIs at a 90% sensitivity level compared to an IBI score > 2 (LR: 0.59 vs. SVM: 0.60 vs. XGBoost: 0.57 vs. IBI score >2: 0.43, -value < 0.001).

CONCLUSIONS

All ML models developed in this study outperformed the traditional scoring system in stratifying low-risk febrile infants after the standardized sensitivity level.

摘要

背景

本研究的目的是开发并评估一种机器学习(ML)模型,以预测前往急诊科(ED)就诊的发热婴幼儿的侵袭性细菌感染(IBIs)。

方法

本回顾性研究于2011年至2018年在台湾地区三个医疗中心的急诊科进行。我们纳入了年龄在0至60天、因发热临床症状前往急诊科就诊的患者。我们开发了三种不同的ML算法,包括逻辑回归(LR)、支持向量机(SVM)和极端梯度提升(XGboost),并将它们预测IBIs的性能与先前经过验证的评分系统(IBI评分)进行比较。

结果

在研究期间,共纳入4211例患者,其中126例(3.1%)患有IBI。通过特征选择过程,LR、SVM和XGboost分别共使用了8个、5个和7个特征。与IBI评分相比,ML模型在预测婴幼儿IBIs时可获得更好的曲线下面积(AUROC)值(LR:0.85,SVM:0.84,XGboost:0.85,IBI评分:0.70,P值<0.001)。使用成本敏感学习算法时,与IBI评分>2相比,所有ML模型在90%敏感性水平下预测IBIs时均表现出更好的特异性(LR:0.59,SVM:0.60,XGboost:0.57,IBI评分>2:0.43,P值<0.001)。

结论

本研究中开发的所有ML模型在标准化敏感性水平后,在对低风险发热婴幼儿进行分层方面均优于传统评分系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8823/8123681/bee240282449/jcm-10-01875-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验