Suppr超能文献

哮喘聚类方法:基于文献的儿童健康研究数据应用

Asthma clustering methods: a literature-informed application to the children's health study data.

作者信息

Ross Mindy K, Eckel Sandrah P, Bui Alex A T, Gilliland Frank D

机构信息

Pediatrics, Pediatric Pulmonology, University of California, Los Angeles, Los Angeles, CA, USA.

Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

出版信息

J Asthma. 2022 Jul;59(7):1305-1318. doi: 10.1080/02770903.2021.1923738. Epub 2021 May 18.

Abstract

OBJECTIVE

The heterogeneity of asthma has inspired widespread application of statistical clustering algorithms to a variety of datasets for identification of potentially clinically meaningful phenotypes. There has not been a standardized data analysis approach for asthma clustering, which can affect reproducibility and clinical translation of results. Our objective was to identify common and effective data analysis practices in the asthma clustering literature and apply them to data from a Southern California population-based cohort of schoolchildren with asthma.

METHODS

As of January 1, 2020, we reviewed key statistical elements of 77 asthma clustering studies. Guided by the literature, we used 12 input variables and three clustering methods (hierarchical clustering, medoids, and latent class analysis) to identify clusters in 598 schoolchildren with asthma from the Southern California Children's Health Study (CHS).

RESULTS

Clusters of children identified by latent class analysis were characterized by exhaled nitric oxide, FEV/FVC, FEV percent predicted, asthma control and allergy score; and were predictive of control at two year follow up. Clusters from the other two methods were less clinically remarkable, primarily differentiated by sex and race/ethnicity and less predictive of asthma control over time.

CONCLUSION

Upon review of the asthma phenotyping literature, common approaches of data clustering emerged. When applying these elements to the Children's Health Study data, latent class analysis clusters-represented by exhaled nitric oxide and spirometry measures-had clinical relevance over time.

摘要

目的

哮喘的异质性促使统计聚类算法被广泛应用于各种数据集,以识别具有潜在临床意义的表型。目前尚无用于哮喘聚类的标准化数据分析方法,这可能会影响结果的可重复性和临床转化。我们的目的是确定哮喘聚类文献中常见且有效的数据分析方法,并将其应用于来自南加州以人群为基础的哮喘学童队列的数据。

方法

截至2020年1月1日,我们回顾了77项哮喘聚类研究的关键统计要素。在文献的指导下,我们使用12个输入变量和三种聚类方法(层次聚类、中心点法和潜在类别分析)对来自南加州儿童健康研究(CHS)的598名哮喘学童进行聚类。

结果

通过潜在类别分析确定的儿童聚类以呼出一氧化氮、FEV/FVC、预测FEV百分比、哮喘控制和过敏评分等为特征;并且在两年随访中对哮喘控制情况具有预测性。其他两种方法得出的聚类在临床上不太显著,主要按性别和种族/民族区分,对哮喘控制随时间变化的预测性较低。

结论

通过回顾哮喘表型文献,出现了数据聚类的常见方法。将这些要素应用于儿童健康研究数据时,以呼出一氧化氮和肺量计测量为代表的潜在类别分析聚类随时间推移具有临床相关性。

相似文献

本文引用的文献

4
Cluster Analysis Identifies 3 Phenotypes within Allergic Asthma.聚类分析确定过敏性哮喘的 3 种表型。
J Allergy Clin Immunol Pract. 2018 May-Jun;6(3):955-961.e1. doi: 10.1016/j.jaip.2017.10.006. Epub 2017 Nov 10.
8
Distinct Asthma Phenotypes Among Older Adults with Asthma.老年人哮喘的不同表型。
J Allergy Clin Immunol Pract. 2018 Jan-Feb;6(1):244-249.e2. doi: 10.1016/j.jaip.2017.06.010. Epub 2017 Jul 27.
9
Cluster Analysis on Longitudinal Data of Patients with Adult-Onset Asthma.患者成人发病哮喘纵向数据的聚类分析。
J Allergy Clin Immunol Pract. 2017 Jul-Aug;5(4):967-978.e3. doi: 10.1016/j.jaip.2017.01.027. Epub 2017 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验