Suppr超能文献

多视图聚类分析鉴定重症哮喘中皮质类固醇反应的可变表型。

Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma.

机构信息

1 Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania.

2 Department of Medicine, University of Arizona, Tucson, Arizona.

出版信息

Am J Respir Crit Care Med. 2019 Jun 1;199(11):1358-1367. doi: 10.1164/rccm.201808-1543OC.

Abstract

Corticosteroids (CSs) are the most effective asthma therapy, but responses are heterogeneous and systemic CSs lead to long-term side effects. Therefore, an improved understanding of the contributing factors in CS responses could enhance precision management. Although several factors have been associated with CS responsiveness, no integrated/cluster approach has yet been undertaken to identify differential CS responses. To identify asthma subphenotypes with differential responses to CS treatment using an unsupervised multiview learning approach. Multiple-kernel -means clustering was applied to 100 clinical, physiological, inflammatory, and demographic variables from 346 adult participants with asthma in the Severe Asthma Research Program with paired (before and 2-3 weeks after triamcinolone administration) sputum data. Machine-learning techniques were used to select the top baseline variables that predicted cluster assignment for a new patient. Multiple-kernel clustering revealed four clusters of individuals with asthma and different CS responses. Clusters 1 and 2 consisted of young, modestly CS-responsive individuals with allergic asthma and relatively normal lung function, separated by contrasting sputum neutrophil and macrophage percentages after CS treatment. The subjects in cluster 3 had late-onset asthma and low lung function, high baseline eosinophilia, and the greatest CS responsiveness. Cluster 4 consisted primarily of young, obese females with severe airflow limitation, little eosinophilic inflammation, and the least CS responsiveness. The top 12 baseline variables were identified, and the clusters were validated using an independent Severe Asthma Research Program test set. Our machine learning-based approaches provide new insights into the mechanisms of CS responsiveness in asthma, with the potential to improve disease treatment.

摘要

皮质类固醇(CSs)是最有效的哮喘治疗方法,但反应存在异质性,全身 CS 会导致长期副作用。因此,深入了解 CS 反应的影响因素可以增强精准管理。尽管已经有几个因素与 CS 反应性相关,但尚未采用综合/聚类方法来识别不同的 CS 反应。本研究旨在采用无监督多视图学习方法,确定对 CS 治疗有不同反应的哮喘亚型。对来自严重哮喘研究计划(346 名成年哮喘患者)的配对(使用曲安奈德治疗前和 2-3 周后)痰数据的 100 个临床、生理、炎症和人口统计学变量,应用多核聚类进行分析。采用机器学习技术,选择预测新患者聚类分配的最佳基线变量。多核聚类揭示了具有不同 CS 反应的哮喘患者的四个聚类。聚类 1 和 2 由年轻、适度 CS 反应性、过敏哮喘且肺功能相对正常的个体组成,它们在 CS 治疗后痰液中性粒细胞和巨噬细胞百分比上存在差异。聚类 3 的患者哮喘发病晚、肺功能差、基线嗜酸性粒细胞增多、CS 反应性最强。聚类 4 主要由年轻、肥胖的女性组成,她们存在严重气流受限、嗜酸性粒细胞炎症较少和 CS 反应性最差。确定了前 12 个基线变量,并使用独立的严重哮喘研究计划测试集对聚类进行验证。我们基于机器学习的方法为 CS 反应性在哮喘中的作用机制提供了新的见解,有可能改善疾病治疗。

相似文献

1
Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma.
Am J Respir Crit Care Med. 2019 Jun 1;199(11):1358-1367. doi: 10.1164/rccm.201808-1543OC.
2
Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data.
J Allergy Clin Immunol. 2014 May;133(5):1280-8. doi: 10.1016/j.jaci.2013.11.042. Epub 2014 Feb 28.
3
Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis.
J Allergy Clin Immunol. 2014 Jun;133(6):1557-63.e5. doi: 10.1016/j.jaci.2013.10.011. Epub 2013 Dec 9.
4
Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program.
Am J Respir Crit Care Med. 2010 Feb 15;181(4):315-23. doi: 10.1164/rccm.200906-0896OC. Epub 2009 Nov 5.
5
Leukocyte redistribution as immunological biomarker of corticosteroid resistance in severe asthma.
Clin Exp Allergy. 2022 Oct;52(10):1183-1194. doi: 10.1111/cea.14128. Epub 2022 Apr 1.
6
Asthma Phenotypes Defined From Parameters Obtained During Recovery From a Hospital-Treated Exacerbation.
J Allergy Clin Immunol Pract. 2018 Nov-Dec;6(6):1960-1967. doi: 10.1016/j.jaip.2018.02.012. Epub 2018 Mar 1.
8
Three phenotypes of adult-onset asthma.
Allergy. 2013;68(5):674-80. doi: 10.1111/all.12136.
9
Distinct Phenotypes of Cigarette Smokers Identified by Cluster Analysis of Patients with Severe Asthma.
Ann Am Thorac Soc. 2015 Dec;12(12):1771-80. doi: 10.1513/AnnalsATS.201507-407OC.
10
A Transcriptome-driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED.
Am J Respir Crit Care Med. 2017 Feb 15;195(4):443-455. doi: 10.1164/rccm.201512-2452OC.

引用本文的文献

1
Application and research progress of artificial intelligence in allergic diseases.
Int J Med Sci. 2025 Apr 9;22(9):2088-2102. doi: 10.7150/ijms.105422. eCollection 2025.
2
Non-T2 asthma.
Curr Opin Pulm Med. 2025 May 1;31(3):287-293. doi: 10.1097/MCP.0000000000001154. Epub 2025 Mar 27.
3
Chronic Inflammation in Asthma: Looking Beyond the Th2 Cell.
Immunol Rev. 2025 Mar;330(1):e70010. doi: 10.1111/imr.70010.
4
The role of DC subgroups in the pathogenesis of asthma.
Front Immunol. 2024 Oct 28;15:1481989. doi: 10.3389/fimmu.2024.1481989. eCollection 2024.
6
Allergic Bronchopulmonary Aspergillosis/Mycosis: An Allergic Disease or an Eosinophilic Disease?
Intern Med. 2025 Feb 15;64(4):493-501. doi: 10.2169/internalmedicine.4386-24. Epub 2024 Sep 4.
7
Weighted Breaths: Exploring Biologic and Non-Biologic Therapies for Co-Existing Asthma and Obesity.
Curr Allergy Asthma Rep. 2024 Jul;24(7):381-393. doi: 10.1007/s11882-024-01153-x. Epub 2024 Jun 15.
8
Novel Machine Learning Identifies 5 Asthma Phenotypes Using Cluster Analysis of Real-World Data.
J Allergy Clin Immunol Pract. 2024 Aug;12(8):2084-2091.e4. doi: 10.1016/j.jaip.2024.04.035. Epub 2024 Apr 27.
9
Protein-Protein interactive networks identified in bronchoalveolar lavage of severe compared to nonsevere asthma.
Clin Exp Allergy. 2024 Apr;54(4):265-277. doi: 10.1111/cea.14447. Epub 2024 Jan 22.
10
Explainable hierarchical clustering for patient subtyping and risk prediction.
Exp Biol Med (Maywood). 2023 Dec;248(24):2547-2559. doi: 10.1177/15353702231214253. Epub 2023 Dec 15.

本文引用的文献

1
Transforming growth factor β2 (TGFβ2) signaling plays a key role in glucocorticoid-induced ocular hypertension.
J Biol Chem. 2018 Jun 22;293(25):9854-9868. doi: 10.1074/jbc.RA118.002540. Epub 2018 May 9.
3
Effects of Age and Disease Severity on Systemic Corticosteroid Responses in Asthma.
Am J Respir Crit Care Med. 2017 Jun 1;195(11):1439-1448. doi: 10.1164/rccm.201607-1453OC.
4
Dexamethasone Stiffens Trabecular Meshwork, Trabecular Meshwork Cells, and Matrix.
Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4447-59. doi: 10.1167/iovs.15-16739.
5
Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data.
J Allergy Clin Immunol. 2014 May;133(5):1280-8. doi: 10.1016/j.jaci.2013.11.042. Epub 2014 Feb 28.
6
International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma.
Eur Respir J. 2014 Feb;43(2):343-73. doi: 10.1183/09031936.00202013. Epub 2013 Dec 12.
7
Severe adult-onset asthma: A distinct phenotype.
J Allergy Clin Immunol. 2013 Aug;132(2):336-41. doi: 10.1016/j.jaci.2013.04.052. Epub 2013 Jun 24.
8
Asthma phenotypes: the evolution from clinical to molecular approaches.
Nat Med. 2012 May 4;18(5):716-25. doi: 10.1038/nm.2678.
9
Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program.
Am J Respir Crit Care Med. 2010 Feb 15;181(4):315-23. doi: 10.1164/rccm.200906-0896OC. Epub 2009 Nov 5.
10
Fluctuation analysis of lung function as a predictor of long-term response to beta2-agonists.
Eur Respir J. 2009 Mar;33(3):486-93. doi: 10.1183/09031936.00106208. Epub 2008 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验