1 Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania.
2 Department of Medicine, University of Arizona, Tucson, Arizona.
Am J Respir Crit Care Med. 2019 Jun 1;199(11):1358-1367. doi: 10.1164/rccm.201808-1543OC.
Corticosteroids (CSs) are the most effective asthma therapy, but responses are heterogeneous and systemic CSs lead to long-term side effects. Therefore, an improved understanding of the contributing factors in CS responses could enhance precision management. Although several factors have been associated with CS responsiveness, no integrated/cluster approach has yet been undertaken to identify differential CS responses. To identify asthma subphenotypes with differential responses to CS treatment using an unsupervised multiview learning approach. Multiple-kernel -means clustering was applied to 100 clinical, physiological, inflammatory, and demographic variables from 346 adult participants with asthma in the Severe Asthma Research Program with paired (before and 2-3 weeks after triamcinolone administration) sputum data. Machine-learning techniques were used to select the top baseline variables that predicted cluster assignment for a new patient. Multiple-kernel clustering revealed four clusters of individuals with asthma and different CS responses. Clusters 1 and 2 consisted of young, modestly CS-responsive individuals with allergic asthma and relatively normal lung function, separated by contrasting sputum neutrophil and macrophage percentages after CS treatment. The subjects in cluster 3 had late-onset asthma and low lung function, high baseline eosinophilia, and the greatest CS responsiveness. Cluster 4 consisted primarily of young, obese females with severe airflow limitation, little eosinophilic inflammation, and the least CS responsiveness. The top 12 baseline variables were identified, and the clusters were validated using an independent Severe Asthma Research Program test set. Our machine learning-based approaches provide new insights into the mechanisms of CS responsiveness in asthma, with the potential to improve disease treatment.
皮质类固醇(CSs)是最有效的哮喘治疗方法,但反应存在异质性,全身 CS 会导致长期副作用。因此,深入了解 CS 反应的影响因素可以增强精准管理。尽管已经有几个因素与 CS 反应性相关,但尚未采用综合/聚类方法来识别不同的 CS 反应。本研究旨在采用无监督多视图学习方法,确定对 CS 治疗有不同反应的哮喘亚型。对来自严重哮喘研究计划(346 名成年哮喘患者)的配对(使用曲安奈德治疗前和 2-3 周后)痰数据的 100 个临床、生理、炎症和人口统计学变量,应用多核聚类进行分析。采用机器学习技术,选择预测新患者聚类分配的最佳基线变量。多核聚类揭示了具有不同 CS 反应的哮喘患者的四个聚类。聚类 1 和 2 由年轻、适度 CS 反应性、过敏哮喘且肺功能相对正常的个体组成,它们在 CS 治疗后痰液中性粒细胞和巨噬细胞百分比上存在差异。聚类 3 的患者哮喘发病晚、肺功能差、基线嗜酸性粒细胞增多、CS 反应性最强。聚类 4 主要由年轻、肥胖的女性组成,她们存在严重气流受限、嗜酸性粒细胞炎症较少和 CS 反应性最差。确定了前 12 个基线变量,并使用独立的严重哮喘研究计划测试集对聚类进行验证。我们基于机器学习的方法为 CS 反应性在哮喘中的作用机制提供了新的见解,有可能改善疾病治疗。