Suppr超能文献

颈动脉粥样硬化斑块内斑块新生血管和出血的数学建模。

Mathematical modeling of intraplaque neovascularization and hemorrhage in a carotid atherosclerotic plaque.

机构信息

School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.

School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia.

出版信息

Biomed Eng Online. 2021 Apr 29;20(1):42. doi: 10.1186/s12938-021-00878-4.

Abstract

BACKGROUND

Growing experimental evidence has identified neovascularization from the adventitial vasa vasorum and induced intraplaque hemorrhage (IPH) as critical indicators during the development of vulnerable atherosclerotic plaques. In this study, we propose a mathematical model incorporating intraplaque angiogenesis and hemodynamic calculation of the microcirculation, to obtain the quantitative evaluation of the influences of intraplaque neovascularization and hemorrhage on vulnerable plaque development. A two-dimensional nine-point model of angiogenic microvasculature is generated based on the histology of a patient's carotid plaque. The intraplaque angiogenesis model includes three key cells (endothelial cells, smooth muscle cells, and macrophages) and three key chemical factors (vascular endothelial growth factors, extracellular matrix, and matrix metalloproteinase), which densities and concentrations are described by a series of reaction-diffusion equations. The hemodynamic calculation by coupling the intravascular blood flow, the extravascular plasma flow, and the transvascular transport is carried out on the generated angiogenic microvessel network. We then define the IPH area by using the plasma concentration in the interstitial tissue, as well as the extravascular transport across the capillary wall.

RESULTS

The simulational results reproduce a series of pathophysiological phenomena during the atherosclerotic plaque progression. It is found that the high microvessel density region at the shoulder areas and the extravascular flow across the leaky wall of the neovasculature contribute to the IPH observed widely in vulnerable plaques. The simulational results are validated by both the in vivo MR imaging data and in vitro experimental observations and show significant consistency in quantity ground. Moreover, the sensitivity analysis of model parameters reveals that the IPH area and extent can be reduced significantly by decreasing the MVD and the wall permeability of the neovasculature.

CONCLUSIONS

The current quantitative model could help us to better understand the roles of microvascular and intraplaque hemorrhage during the carotid plaque progression.

摘要

背景

越来越多的实验证据表明,血管外膜血管的新生和斑块内诱导性出血(IPH)是易损粥样硬化斑块发展过程中的关键指标。在这项研究中,我们提出了一个数学模型,将斑块内血管生成和微循环血流动力学计算结合起来,以获得斑块内新生血管和出血对易损斑块发展影响的定量评估。基于患者颈动脉斑块的组织学,生成了一个二维九点血管生成微血管模型。斑块内血管生成模型包括三种关键细胞(内皮细胞、平滑肌细胞和巨噬细胞)和三种关键化学因子(血管内皮生长因子、细胞外基质和基质金属蛋白酶),它们的密度和浓度由一系列反应-扩散方程来描述。在生成的血管生成微血管网络上,通过耦合血管内血流、血管外血浆流和跨血管转运来进行血流动力学计算。然后,我们通过间质组织中的血浆浓度以及穿过毛细血管壁的血管外转运来定义 IPH 区域。

结果

模拟结果再现了动脉粥样硬化斑块进展过程中的一系列病理生理现象。研究发现,肩部高微血管密度区域和新生血管渗漏壁的血管外流动导致了易损斑块中广泛观察到的 IPH。模拟结果与体内磁共振成像数据和体外实验观察结果相吻合,在数量上具有显著的一致性。此外,模型参数的敏感性分析表明,通过降低 MVD 和新生血管的壁通透性,可以显著减少 IPH 面积和程度。

结论

当前的定量模型可以帮助我们更好地理解在颈动脉斑块进展过程中微血管和斑块内出血的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0926/8082657/8960fb7306c7/12938_2021_878_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验