Suppr超能文献

评估癌症模型的转录保真度。

Evaluating the transcriptional fidelity of cancer models.

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

出版信息

Genome Med. 2021 Apr 29;13(1):73. doi: 10.1186/s13073-021-00888-w.

Abstract

BACKGROUND

Cancer researchers use cell lines, patient-derived xenografts, engineered mice, and tumoroids as models to investigate tumor biology and to identify therapies. The generalizability and power of a model derive from the fidelity with which it represents the tumor type under investigation; however, the extent to which this is true is often unclear. The preponderance of models and the ability to readily generate new ones has created a demand for tools that can measure the extent and ways in which cancer models resemble or diverge from native tumors.

METHODS

We developed a machine learning-based computational tool, CancerCellNet, that measures the similarity of cancer models to 22 naturally occurring tumor types and 36 subtypes, in a platform and species agnostic manner. We applied this tool to 657 cancer cell lines, 415 patient-derived xenografts, 26 distinct genetically engineered mouse models, and 131 tumoroids. We validated CancerCellNet by application to independent data, and we tested several predictions with immunofluorescence.

RESULTS

We have documented the cancer models with the greatest transcriptional fidelity to natural tumors, we have identified cancers underserved by adequate models, and we have found models with annotations that do not match their classification. By comparing models across modalities, we report that, on average, genetically engineered mice and tumoroids have higher transcriptional fidelity than patient-derived xenografts and cell lines in four out of five tumor types. However, several patient-derived xenografts and tumoroids have classification scores that are on par with native tumors, highlighting both their potential as faithful model classes and their heterogeneity.

CONCLUSIONS

CancerCellNet enables the rapid assessment of transcriptional fidelity of tumor models. We have made CancerCellNet available as a freely downloadable R package ( https://github.com/pcahan1/cancerCellNet ) and as a web application ( http://www.cahanlab.org/resources/cancerCellNet_web ) that can be applied to new cancer models that allows for direct comparison to the cancer models evaluated here.

摘要

背景

癌症研究人员使用细胞系、患者来源的异种移植物、基因工程小鼠和类器官作为模型来研究肿瘤生物学并确定治疗方法。模型的通用性和有效性源于其对研究中肿瘤类型的保真度;然而,这在多大程度上是真实的往往不清楚。模型的大量出现以及能够轻易地生成新模型的能力,创造了对能够衡量癌症模型与天然肿瘤的相似程度和差异程度的工具的需求。

方法

我们开发了一种基于机器学习的计算工具 CancerCellNet,它以平台和物种不可知的方式衡量癌症模型与 22 种自然发生的肿瘤类型和 36 种亚型的相似程度。我们将该工具应用于 657 种癌细胞系、415 种患者来源的异种移植物、26 种不同的基因工程小鼠模型和 131 种类器官。我们通过应用于独立数据来验证 CancerCellNet,并通过免疫荧光进行了几项预测测试。

结果

我们记录了与天然肿瘤具有最大转录保真度的癌症模型,确定了缺乏充分模型的癌症,并发现了注释与其分类不匹配的模型。通过比较不同模式的模型,我们报告说,在五种肿瘤类型中的四种中,平均而言,基因工程小鼠和类器官的转录保真度高于患者来源的异种移植物和细胞系。然而,一些患者来源的异种移植物和类器官的分类评分与天然肿瘤相当,这突出了它们作为忠实模型类别的潜力及其异质性。

结论

CancerCellNet 能够快速评估肿瘤模型的转录保真度。我们已经将 CancerCellNet 作为一个可免费下载的 R 包(https://github.com/pcahan1/cancerCellNet)和一个网络应用程序(http://www.cahanlab.org/resources/cancerCellNet_web)提供,该应用程序可应用于新的癌症模型,允许与这里评估的癌症模型直接比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/716f/8086312/d1d2c889f007/13073_2021_888_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验