Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA.
Department of Material Science and Engineering, University of Washington, Seattle, WA, USA.
Nanoscale. 2021 Apr 30;13(16):7735-7743. doi: 10.1039/d0nr07208g.
The spontaneous co-organization of distinct biomolecules at interfaces enables many of Nature's hierarchical organizations involving both hard and soft materials. Engineering efforts to mimic such hybrid complexes rely on our ability to rationally structure biomolecules at inorganic interfaces. Control over the nanoscale structure of patterned biomolecules remains challenging due to difficulties in controlling the multifarious interactions involved. This work discusses binary peptide assembly as a means to fabricate biomolecular nano-mosaics at graphite surfaces with predictable structures. Distinct peptide-substrate interactions lead to divergent crystallographic growth directions, molecular scale immiscibility, and a symbiotic assembly phenomenon. We present a symbiotic assembly model that accurately predicts the binary assembly structure relying solely on the constituent peptide nucleation kinetics and molar fractions. The ability to tune such biomolecular nano-mosaic structures facilitates the bottom up fabrication of high-density, multifunctional interfaces for nanotechnology.
界面上不同生物分子的自发协同组织使许多涉及硬物质和软物质的自然分层组织成为可能。模仿这种混合复合物的工程努力依赖于我们在无机界面上合理构建生物分子的能力。由于难以控制涉及的多种相互作用,因此对图案化生物分子的纳米级结构的控制仍然具有挑战性。这项工作讨论了二元肽组装作为在石墨表面制造具有可预测结构的生物分子纳米镶嵌的一种手段。不同的肽-基底相互作用导致不同的晶体生长方向、分子尺度的不混溶性以及共生组装现象。我们提出了一种共生组装模型,该模型仅依靠组成肽成核动力学和摩尔分数就能准确预测二元组装结构。调节这种生物分子纳米镶嵌结构的能力促进了高密度、多功能纳米技术界面的自下而上制造。