Xu Aihao, Chen Xiangyu, Wei Dong, Chu Bingxian, Yu Meihua, Yin Xucai, Xu Jing
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China.
School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Small. 2023 Sep;19(38):e2302253. doi: 10.1002/smll.202302253. Epub 2023 May 21.
The electrochemical carbon dioxide reduction reaction (E-CO RR) to formate is a promising strategy for mitigating greenhouse gas emissions and addressing the global energy crisis. Developing low-cost and environmentally friendly electrocatalysts with high selectivity and industrial current densities for formate production is an ideal but challenging goal in the field of electrocatalysis. Herein, novel titanium-doped bismuth nanosheets (TiBi NSs) with enhanced E-CO RR performance are synthesized through one-step electrochemical reduction of bismuth titanate (Bi Ti O ). We comprehensively evaluated TiBi NSs using in situ Raman spectra, finite element method, and density functional theory. The results indicate that the ultrathin nanosheet structure of TiBi NSs can accelerate mass transfer, while the electron-rich properties can accelerate the production of *CO and enhance the adsorption strength of *OCHO intermediate. The TiBi NSs deliver a high formate Faradaic efficiency (FE ) of 96.3% and a formate production rate of 4032 µmol h cm at -1.01 V versus RHE. An ultra-high current density of -338.3 mA cm is achieved at -1.25 versus RHE, and simultaneously FE still reaches more than 90%. Furthermore, the rechargeable Zn-CO battery using TiBi NSs as a cathode catalyst achieves a maximum power density of 1.05 mW cm and excellent charging/discharging stability of 27 h.
电化学二氧化碳还原反应(E-CO RR)生成甲酸盐是缓解温室气体排放和解决全球能源危机的一项有前景的策略。开发用于甲酸盐生产的具有高选择性和工业电流密度的低成本、环境友好型电催化剂是电催化领域一个理想但具有挑战性的目标。在此,通过一步电化学还原钛酸铋(Bi₂TiO₅)合成了具有增强的E-CO RR性能的新型钛掺杂铋纳米片(TiBi NSs)。我们使用原位拉曼光谱、有限元方法和密度泛函理论对TiBi NSs进行了全面评估。结果表明,TiBi NSs的超薄纳米片结构可以加速传质,而富电子特性可以加速CO的生成并增强OCHO中间体的吸附强度。TiBi NSs在相对于可逆氢电极(RHE)为-1.01 V时,甲酸盐法拉第效率(FE)高达96.3%,甲酸盐生成速率为4032 μmol h⁻¹ cm⁻²。在相对于RHE为-1.25 V时,实现了-338.3 mA cm⁻²的超高电流密度,同时FE仍超过90%。此外,使用TiBi NSs作为阴极催化剂的可充电锌-二氧化碳电池实现了1.05 mW cm⁻²的最大功率密度和27小时的优异充放电稳定性。