文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的磁共振图像前列腺移行区和外周区的分割。

Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning.

机构信息

From the Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Building 55, Suite 201, Orange, CA 92868 (M.B., R.H., K.T.H., C. Chahine, M.R.); Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, Calif (C. Chantaduly, D.C., P.C.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (A.U.).

出版信息

Radiol Imaging Cancer. 2021 May;3(3):e200024. doi: 10.1148/rycan.2021200024.


DOI:10.1148/rycan.2021200024
PMID:33929265
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8189171/
Abstract

Purpose To develop a deep learning model to delineate the transition zone (TZ) and peripheral zone (PZ) of the prostate on MR images. Materials and Methods This retrospective study was composed of patients who underwent a multiparametric prostate MRI and an MRI/transrectal US fusion biopsy between January 2013 and May 2016. A board-certified abdominal radiologist manually segmented the prostate, TZ, and PZ on the entire data set. Included accessions were split into 60% training, 20% validation, and 20% test data sets for model development. Three convolutional neural networks with a U-Net architecture were trained for automatic recognition of the prostate organ, TZ, and PZ. Model performance for segmentation was assessed using Dice scores and Pearson correlation coefficients. Results A total of 242 patients were included (242 MR images; 6292 total images). Models for prostate organ segmentation, TZ segmentation, and PZ segmentation were trained and validated. Using the test data set, for prostate organ segmentation, the mean Dice score was 0.940 (interquartile range, 0.930-0.961), and the Pearson correlation coefficient for volume was 0.981 (95% CI: 0.966, 0.989). For TZ segmentation, the mean Dice score was 0.910 (interquartile range, 0.894-0.938), and the Pearson correlation coefficient for volume was 0.992 (95% CI: 0.985, 0.995). For PZ segmentation, the mean Dice score was 0.774 (interquartile range, 0.727-0.832), and the Pearson correlation coefficient for volume was 0.927 (95% CI: 0.870, 0.957). Conclusion Deep learning with an architecture composed of three U-Nets can accurately segment the prostate, TZ, and PZ. MRI, Genital/Reproductive, Prostate, Neural Networks © RSNA, 2021.

摘要

目的:开发一种深度学习模型,以描绘磁共振图像上的前列腺移行区(TZ)和外周区(PZ)。

材料与方法:本回顾性研究纳入了 2013 年 1 月至 2016 年 5 月间接受多参数前列腺 MRI 检查和 MRI/经直肠超声融合活检的患者。一名经过委员会认证的腹部放射科医生手动对整个数据集进行前列腺、TZ 和 PZ 的分割。入组的患者被分为 60%的训练集、20%的验证集和 20%的测试集,用于模型开发。采用 U-Net 架构的三个卷积神经网络进行训练,以自动识别前列腺器官、TZ 和 PZ。使用 Dice 评分和 Pearson 相关系数评估分割模型的性能。

结果:共纳入 242 例患者(242 例 MRI 图像;共 6292 例图像)。对前列腺器官、TZ 和 PZ 的分割模型进行了训练和验证。使用测试数据集,对于前列腺器官分割,平均 Dice 评分 0.940(四分位间距,0.930-0.961),体积 Pearson 相关系数为 0.981(95%CI:0.966,0.989)。对于 TZ 分割,平均 Dice 评分 0.910(四分位间距,0.894-0.938),体积 Pearson 相关系数为 0.992(95%CI:0.985,0.995)。对于 PZ 分割,平均 Dice 评分 0.774(四分位间距,0.727-0.832),体积 Pearson 相关系数为 0.927(95%CI:0.870,0.957)。

结论:基于三个 U-Net 架构的深度学习可以准确分割前列腺、TZ 和 PZ。

相似文献

[1]
Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning.

Radiol Imaging Cancer. 2021-5

[2]
A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.

AJR Am J Roentgenol. 2021-1

[3]
Deep Learning Whole-Gland and Zonal Prostate Segmentation on a Public MRI Dataset.

J Magn Reson Imaging. 2021-8

[4]
Transition-zone PSA-density calculated from MRI deep learning prostate zonal segmentation model for prediction of clinically significant prostate cancer.

Abdom Radiol (NY). 2024-10

[5]
Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks.

Eur Radiol. 2023-7

[6]
Exploring Uncertainty Measures in Bayesian Deep Attentive Neural Networks for Prostate Zonal Segmentation.

IEEE Access. 2020

[7]
Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment.

Radiology. 2019-10-8

[8]
Segmentation of prostate zones using probabilistic atlas-based method with diffusion-weighted MR images.

Comput Methods Programs Biomed. 2020-11

[9]
Automated segmentation of prostate zonal anatomy on T2-weighted (T2W) and apparent diffusion coefficient (ADC) map MR images using U-Nets.

Med Phys. 2019-5-11

[10]
Fully automatic segmentation on prostate MR images based on cascaded fully convolution network.

J Magn Reson Imaging. 2018-10-22

引用本文的文献

[1]
Review of different convolutional neural networks used in segmentation of prostate during fusion biopsy.

Cent European J Urol. 2025

[2]
Prognostic value of central gland volume on MRI for biochemical recurrence after prostate radiotherapy.

Abdom Radiol (NY). 2025-6

[3]
Comparison of data fusion strategies for automated prostate lesion detection using mpMRI correlated with whole mount histology.

Radiat Oncol. 2024-7-29

[4]
Transition-zone PSA-density calculated from MRI deep learning prostate zonal segmentation model for prediction of clinically significant prostate cancer.

Abdom Radiol (NY). 2024-10

[5]
Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management.

Cancers (Basel). 2024-5-9

[6]
Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review.

Radiol Artif Intell. 2024-7

[7]
Deep learning performance on MRI prostate gland segmentation: evaluation of two commercially available algorithms compared with an expert radiologist.

J Med Imaging (Bellingham). 2024-1

[8]
Inter-Rater Variability of Prostate Lesion Segmentation on Multiparametric Prostate MRI.

Biomedicines. 2023-12-14

[9]
A Review of the Clinical Applications of Artificial Intelligence in Abdominal Imaging.

Diagnostics (Basel). 2023-9-8

[10]
Research progress on deep learning in magnetic resonance imaging-based diagnosis and treatment of prostate cancer: a review on the current status and perspectives.

Front Oncol. 2023-6-13

本文引用的文献

[1]
A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.

AJR Am J Roentgenol. 2021-1

[2]
Deep-Learning-Based Artificial Intelligence for PI-RADS Classification to Assist Multiparametric Prostate MRI Interpretation: A Development Study.

J Magn Reson Imaging. 2020-11

[3]
Applications of Artificial Intelligence to Prostate Multiparametric MRI (mpMRI): Current and Emerging Trends.

Cancers (Basel). 2020-5-11

[4]
Segmentation of prostate and prostate zones using deep learning : A multi-MRI vendor analysis.

Strahlenther Onkol. 2020-3-27

[5]
Optimizing Neuro-Oncology Imaging: A Review of Deep Learning Approaches for Glioma Imaging.

Cancers (Basel). 2019-6-14

[6]
Deep Learning for Real-time, Automatic, and Scanner-adapted Prostate (Zone) Segmentation of Transrectal Ultrasound, for Example, Magnetic Resonance Imaging-transrectal Ultrasound Fusion Prostate Biopsy.

Eur Urol Focus. 2021-1

[7]
Automated segmentation of prostate zonal anatomy on T2-weighted (T2W) and apparent diffusion coefficient (ADC) map MR images using U-Nets.

Med Phys. 2019-5-11

[8]
Prostate zonal segmentation in 1.5T and 3T T2W MRI using a convolutional neural network.

J Med Imaging (Bellingham). 2019-1

[9]
Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.

Med Phys. 2019-2-19

[10]
Fully automatic segmentation on prostate MR images based on cascaded fully convolution network.

J Magn Reson Imaging. 2018-10-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索