Suppr超能文献

基于深度学习的磁共振图像前列腺移行区和外周区的分割。

Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning.

机构信息

From the Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Building 55, Suite 201, Orange, CA 92868 (M.B., R.H., K.T.H., C. Chahine, M.R.); Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, Calif (C. Chantaduly, D.C., P.C.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (A.U.).

出版信息

Radiol Imaging Cancer. 2021 May;3(3):e200024. doi: 10.1148/rycan.2021200024.

Abstract

Purpose To develop a deep learning model to delineate the transition zone (TZ) and peripheral zone (PZ) of the prostate on MR images. Materials and Methods This retrospective study was composed of patients who underwent a multiparametric prostate MRI and an MRI/transrectal US fusion biopsy between January 2013 and May 2016. A board-certified abdominal radiologist manually segmented the prostate, TZ, and PZ on the entire data set. Included accessions were split into 60% training, 20% validation, and 20% test data sets for model development. Three convolutional neural networks with a U-Net architecture were trained for automatic recognition of the prostate organ, TZ, and PZ. Model performance for segmentation was assessed using Dice scores and Pearson correlation coefficients. Results A total of 242 patients were included (242 MR images; 6292 total images). Models for prostate organ segmentation, TZ segmentation, and PZ segmentation were trained and validated. Using the test data set, for prostate organ segmentation, the mean Dice score was 0.940 (interquartile range, 0.930-0.961), and the Pearson correlation coefficient for volume was 0.981 (95% CI: 0.966, 0.989). For TZ segmentation, the mean Dice score was 0.910 (interquartile range, 0.894-0.938), and the Pearson correlation coefficient for volume was 0.992 (95% CI: 0.985, 0.995). For PZ segmentation, the mean Dice score was 0.774 (interquartile range, 0.727-0.832), and the Pearson correlation coefficient for volume was 0.927 (95% CI: 0.870, 0.957). Conclusion Deep learning with an architecture composed of three U-Nets can accurately segment the prostate, TZ, and PZ. MRI, Genital/Reproductive, Prostate, Neural Networks © RSNA, 2021.

摘要

目的

开发一种深度学习模型,以描绘磁共振图像上的前列腺移行区(TZ)和外周区(PZ)。

材料与方法

本回顾性研究纳入了 2013 年 1 月至 2016 年 5 月间接受多参数前列腺 MRI 检查和 MRI/经直肠超声融合活检的患者。一名经过委员会认证的腹部放射科医生手动对整个数据集进行前列腺、TZ 和 PZ 的分割。入组的患者被分为 60%的训练集、20%的验证集和 20%的测试集,用于模型开发。采用 U-Net 架构的三个卷积神经网络进行训练,以自动识别前列腺器官、TZ 和 PZ。使用 Dice 评分和 Pearson 相关系数评估分割模型的性能。

结果

共纳入 242 例患者(242 例 MRI 图像;共 6292 例图像)。对前列腺器官、TZ 和 PZ 的分割模型进行了训练和验证。使用测试数据集,对于前列腺器官分割,平均 Dice 评分 0.940(四分位间距,0.930-0.961),体积 Pearson 相关系数为 0.981(95%CI:0.966,0.989)。对于 TZ 分割,平均 Dice 评分 0.910(四分位间距,0.894-0.938),体积 Pearson 相关系数为 0.992(95%CI:0.985,0.995)。对于 PZ 分割,平均 Dice 评分 0.774(四分位间距,0.727-0.832),体积 Pearson 相关系数为 0.927(95%CI:0.870,0.957)。

结论

基于三个 U-Net 架构的深度学习可以准确分割前列腺、TZ 和 PZ。

相似文献

1
Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning.
Radiol Imaging Cancer. 2021 May;3(3):e200024. doi: 10.1148/rycan.2021200024.
2
A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.
AJR Am J Roentgenol. 2021 Jan;216(1):111-116. doi: 10.2214/AJR.19.22168. Epub 2020 Nov 10.
3
Deep Learning Whole-Gland and Zonal Prostate Segmentation on a Public MRI Dataset.
J Magn Reson Imaging. 2021 Aug;54(2):452-459. doi: 10.1002/jmri.27585. Epub 2021 Feb 26.
5
Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks.
Eur Radiol. 2023 Jul;33(7):5087-5096. doi: 10.1007/s00330-023-09410-9. Epub 2023 Jan 24.
6
Exploring Uncertainty Measures in Bayesian Deep Attentive Neural Networks for Prostate Zonal Segmentation.
IEEE Access. 2020;8:151817-151828. doi: 10.1109/ACCESS.2020.3017168. Epub 2020 Aug 17.
7
Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment.
Radiology. 2019 Dec;293(3):607-617. doi: 10.1148/radiol.2019190938. Epub 2019 Oct 8.
8
Segmentation of prostate zones using probabilistic atlas-based method with diffusion-weighted MR images.
Comput Methods Programs Biomed. 2020 Nov;196:105572. doi: 10.1016/j.cmpb.2020.105572. Epub 2020 Jun 2.
10
Fully automatic segmentation on prostate MR images based on cascaded fully convolution network.
J Magn Reson Imaging. 2019 Apr;49(4):1149-1156. doi: 10.1002/jmri.26337. Epub 2018 Oct 22.

引用本文的文献

1
Review of different convolutional neural networks used in segmentation of prostate during fusion biopsy.
Cent European J Urol. 2025;78(1):23-39. doi: 10.5173/ceju.2024.0064. Epub 2025 Mar 21.
2
Prognostic value of central gland volume on MRI for biochemical recurrence after prostate radiotherapy.
Abdom Radiol (NY). 2025 Jun;50(6):2710-2719. doi: 10.1007/s00261-024-04717-7. Epub 2024 Nov 27.
6
Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review.
Radiol Artif Intell. 2024 Jul;6(4):e230138. doi: 10.1148/ryai.230138.
7
Deep learning performance on MRI prostate gland segmentation: evaluation of two commercially available algorithms compared with an expert radiologist.
J Med Imaging (Bellingham). 2024 Jan;11(1):015002. doi: 10.1117/1.JMI.11.1.015002. Epub 2024 Feb 22.
8
Inter-Rater Variability of Prostate Lesion Segmentation on Multiparametric Prostate MRI.
Biomedicines. 2023 Dec 14;11(12):3309. doi: 10.3390/biomedicines11123309.
9
A Review of the Clinical Applications of Artificial Intelligence in Abdominal Imaging.
Diagnostics (Basel). 2023 Sep 8;13(18):2889. doi: 10.3390/diagnostics13182889.

本文引用的文献

1
A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.
AJR Am J Roentgenol. 2021 Jan;216(1):111-116. doi: 10.2214/AJR.19.22168. Epub 2020 Nov 10.
4
Segmentation of prostate and prostate zones using deep learning : A multi-MRI vendor analysis.
Strahlenther Onkol. 2020 Oct;196(10):932-942. doi: 10.1007/s00066-020-01607-x. Epub 2020 Mar 27.
5
Optimizing Neuro-Oncology Imaging: A Review of Deep Learning Approaches for Glioma Imaging.
Cancers (Basel). 2019 Jun 14;11(6):829. doi: 10.3390/cancers11060829.
8
Prostate zonal segmentation in 1.5T and 3T T2W MRI using a convolutional neural network.
J Med Imaging (Bellingham). 2019 Jan;6(1):014501. doi: 10.1117/1.JMI.6.1.014501. Epub 2019 Feb 22.
10
Fully automatic segmentation on prostate MR images based on cascaded fully convolution network.
J Magn Reson Imaging. 2019 Apr;49(4):1149-1156. doi: 10.1002/jmri.26337. Epub 2018 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验