文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Review of different convolutional neural networks used in segmentation of prostate during fusion biopsy.

作者信息

Zwolski Maciej, Kupilas Andrzej, Cnota Przemysław

机构信息

Department of Urology and Urooncology, Municipal Hospital No. 4 in Gliwice, Poland.

出版信息

Cent European J Urol. 2025;78(1):23-39. doi: 10.5173/ceju.2024.0064. Epub 2025 Mar 21.


DOI:10.5173/ceju.2024.0064
PMID:40371421
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12073522/
Abstract

INTRODUCTION: The incidence of prostate cancer is increasing in Poland, particularly due to the aging population. This review explores the potential of deep learning algorithms to accelerate prostate contouring during fusion biopsies, a time-consuming but crucial process for the precise diagnosis and appropriate therapeutic decision-making in prostate cancer. Implementing convolutional neural networks (CNNs) can significantly improve segmentation accuracy in multiparametric magnetic resonance imaging (mpMRI). MATERIAL AND METHODS: A comprehensive literature review was conducted using PubMed and IEEE Xplore, focusing on open-access studies from the past five years, and following PRISMA 2020 guidelines. The review evaluates the enhancement of prostate contouring and segmentation in MRI for fusion biopsies using CNNs. RESULTS: The results indicate that CNNs, particularly those utilizing the U-Net architecture, are predominantly selected for advanced medical image analysis. All the reviewed algorithms achieved a Dice similarity coefficient (DSC) above 74%, indicating high precision and effectiveness in automatic prostate segmentation. However, there was significant heterogeneity in the methods used to evaluate segmentation outcomes across different studies. CONCLUSIONS: This review underscores the need for developing and optimizing segmentation algorithms tailored to the specific needs of urologists performing fusion biopsies. Future research with larger cohorts is recommended to confirm these findings and further enhance the practical application of CNN-based segmentation tools in clinical settings.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/ba1629532821/CEJU-78-2024.0064-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/a63d718653df/CEJU-78-2024.0064-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/cc807227ad4a/CEJU-78-2024.0064-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/70457718b0fc/CEJU-78-2024.0064-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/d3e67309827a/CEJU-78-2024.0064-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/ce57bff9eee9/CEJU-78-2024.0064-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/e94d7165d425/CEJU-78-2024.0064-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/ba1629532821/CEJU-78-2024.0064-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/a63d718653df/CEJU-78-2024.0064-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/cc807227ad4a/CEJU-78-2024.0064-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/70457718b0fc/CEJU-78-2024.0064-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/d3e67309827a/CEJU-78-2024.0064-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/ce57bff9eee9/CEJU-78-2024.0064-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/e94d7165d425/CEJU-78-2024.0064-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/12073522/ba1629532821/CEJU-78-2024.0064-g007.jpg

相似文献

[1]
Review of different convolutional neural networks used in segmentation of prostate during fusion biopsy.

Cent European J Urol. 2025

[2]
A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.

AJR Am J Roentgenol. 2021-1

[3]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[4]
Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.

Comput Methods Programs Biomed. 2020-6

[5]
Hybrid deep learning for computational precision in cardiac MRI segmentation: Integrating Autoencoders, CNNs, and RNNs for enhanced structural analysis.

Comput Biol Med. 2025-3

[6]
Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.

Med Phys. 2017-8-31

[7]
Automatic segmentation of prostate MRI using convolutional neural networks: Investigating the impact of network architecture on the accuracy of volume measurement and MRI-ultrasound registration.

Med Image Anal. 2019-9-11

[8]
Comparison of data fusion strategies for automated prostate lesion detection using mpMRI correlated with whole mount histology.

Radiat Oncol. 2024-7-29

[9]
Evaluation of Deep Neural Networks for Semantic Segmentation of Prostate in T2W MRI.

Sensors (Basel). 2020-6-3

[10]
Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks.

Eur Radiol. 2023-7

本文引用的文献

[1]
Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): an international, paired, non-inferiority, confirmatory study.

Lancet Oncol. 2024-7

[2]
What Is Machine Learning, Artificial Neural Networks and Deep Learning?-Examples of Practical Applications in Medicine.

Diagnostics (Basel). 2023-8-3

[3]
Text Data Augmentation for Deep Learning.

J Big Data. 2021

[4]
Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning.

Radiol Imaging Cancer. 2021-5

[5]
A Review of Recent Deep Learning Approaches in Human-Centered Machine Learning.

Sensors (Basel). 2021-4-3

[6]
Deep Learning Improves Speed and Accuracy of Prostate Gland Segmentations on Magnetic Resonance Imaging for Targeted Biopsy.

J Urol. 2021-9

[7]
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions.

J Big Data. 2021

[8]
Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging.

Appl Sci (Basel). 2021-1-2

[9]
Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management-Current Trends and Future Perspectives.

Diagnostics (Basel). 2021-2-20

[10]
In-Bore Versus Fusion MRI-Targeted Biopsy of PI-RADS Category 4 and 5 Lesions: A Retrospective Comparative Analysis Using Propensity Score Weighting.

AJR Am J Roentgenol. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索