Zwolski Maciej, Kupilas Andrzej, Cnota Przemysław
Department of Urology and Urooncology, Municipal Hospital No. 4 in Gliwice, Poland.
Cent European J Urol. 2025;78(1):23-39. doi: 10.5173/ceju.2024.0064. Epub 2025 Mar 21.
The incidence of prostate cancer is increasing in Poland, particularly due to the aging population. This review explores the potential of deep learning algorithms to accelerate prostate contouring during fusion biopsies, a time-consuming but crucial process for the precise diagnosis and appropriate therapeutic decision-making in prostate cancer. Implementing convolutional neural networks (CNNs) can significantly improve segmentation accuracy in multiparametric magnetic resonance imaging (mpMRI).
A comprehensive literature review was conducted using PubMed and IEEE Xplore, focusing on open-access studies from the past five years, and following PRISMA 2020 guidelines. The review evaluates the enhancement of prostate contouring and segmentation in MRI for fusion biopsies using CNNs.
The results indicate that CNNs, particularly those utilizing the U-Net architecture, are predominantly selected for advanced medical image analysis. All the reviewed algorithms achieved a Dice similarity coefficient (DSC) above 74%, indicating high precision and effectiveness in automatic prostate segmentation. However, there was significant heterogeneity in the methods used to evaluate segmentation outcomes across different studies.
This review underscores the need for developing and optimizing segmentation algorithms tailored to the specific needs of urologists performing fusion biopsies. Future research with larger cohorts is recommended to confirm these findings and further enhance the practical application of CNN-based segmentation tools in clinical settings.
在波兰,前列腺癌的发病率正在上升,这主要归因于人口老龄化。本综述探讨了深度学习算法在融合活检过程中加速前列腺轮廓勾画的潜力,融合活检是前列腺癌精确诊断和恰当治疗决策中一个耗时但关键的过程。实施卷积神经网络(CNN)可显著提高多参数磁共振成像(mpMRI)中的分割准确性。
使用PubMed和IEEE Xplore进行了全面的文献综述,重点关注过去五年的开放获取研究,并遵循PRISMA 2020指南。该综述评估了使用CNN在MRI中进行融合活检时前列腺轮廓勾画和分割的增强情况。
结果表明,CNN,尤其是那些采用U-Net架构的CNN,在先进医学图像分析中被广泛选用。所有综述的算法均实现了高于74%的骰子相似系数(DSC),表明在自动前列腺分割方面具有高精度和有效性。然而,不同研究中用于评估分割结果的方法存在显著异质性。
本综述强调了开发和优化适合进行融合活检的泌尿科医生特定需求的分割算法的必要性。建议未来进行更大样本量的研究以证实这些发现,并进一步提高基于CNN的分割工具在临床环境中的实际应用。