Suppr超能文献

基于三维-二维混合 U-Net 卷积神经网络的多参数 MRI 前列腺器官自动分割方法。

A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.

机构信息

Department of Radiological Sciences, University of California, Irvine, CA.

Present affiliation: Mallinckrodt Institute of Radiology, Washington University Saint Louis, Saint Louis, MO.

出版信息

AJR Am J Roentgenol. 2021 Jan;216(1):111-116. doi: 10.2214/AJR.19.22168. Epub 2020 Nov 10.

Abstract

OBJECTIVE

Prostate cancer is the most commonly diagnosed cancer in men in the United States with more than 200,000 new cases in 2018. Multiparametric MRI (mpMRI) is increasingly used for prostate cancer evaluation. Prostate organ segmentation is an essential step of surgical planning for prostate fusion biopsies. Deep learning convolutional neural networks (CNNs) are the predominant method of machine learning for medical image recognition. In this study, we describe a deep learning approach, a subset of artificial intelligence, for automatic localization and segmentation of prostates from mpMRI.

MATERIALS AND METHODS

This retrospective study included patients who underwent prostate MRI and ultrasound-MRI fusion transrectal biopsy between September 2014 and December 2016. Axial T2-weighted images were manually segmented by two abdominal radiologists, which served as ground truth. These manually segmented images were used for training on a customized hybrid 3D-2D U-Net CNN architecture in a fivefold cross-validation paradigm for neural network training and validation. The Dice score, a measure of overlap between manually segmented and automatically derived segmentations, and Pearson linear correlation coefficient of prostate volume were used for statistical evaluation.

RESULTS

The CNN was trained on 299 MRI examinations (total number of MR images = 7774) of 287 patients. The customized hybrid 3D-2D U-Net had a mean Dice score of 0.898 (range, 0.890-0.908) and a Pearson correlation coefficient for prostate volume of 0.974.

CONCLUSION

A deep learning CNN can automatically segment the prostate organ from clinical MR images. Further studies should examine developing pattern recognition for lesion localization and quantification.

摘要

目的

前列腺癌是美国男性中最常见的癌症,2018 年新发病例超过 20 万。多参数 MRI(mpMRI)越来越多地用于前列腺癌评估。前列腺器官分割是前列腺融合活检手术计划的重要步骤。深度学习卷积神经网络(CNN)是医学图像识别中机器学习的主要方法。在这项研究中,我们描述了一种深度学习方法,即人工智能的一个子集,用于从 mpMRI 中自动定位和分割前列腺。

材料和方法

这项回顾性研究纳入了 2014 年 9 月至 2016 年 12 月期间接受前列腺 MRI 和超声-MRI 融合经直肠活检的患者。轴向 T2 加权图像由两位腹部放射科医生手动分割,作为地面实况。这些手动分割的图像用于在定制的混合 3D-2D U-Net CNN 架构上进行训练,该架构采用五折交叉验证范式进行神经网络训练和验证。Dice 评分是手动分割和自动分割之间重叠的度量,前列腺体积的 Pearson 线性相关系数用于统计评估。

结果

该 CNN 是在 287 名患者的 299 次 MRI 检查(MRI 图像总数为 7774 张)上进行训练的。定制的混合 3D-2D U-Net 的平均 Dice 评分为 0.898(范围为 0.890-0.908),前列腺体积的 Pearson 相关系数为 0.974。

结论

深度学习 CNN 可以从临床 MRI 图像中自动分割前列腺器官。进一步的研究应检查开发用于病变定位和量化的模式识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验