School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom.
Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Université Paris Descartes, Paris, France.
Elife. 2021 Apr 30;10:e62915. doi: 10.7554/eLife.62915.
High-dimensional cytometry is an innovative tool for immune monitoring in health and disease, and it has provided novel insight into the underlying biology as well as biomarkers for a variety of diseases. However, the analysis of large multiparametric datasets usually requires specialist computational knowledge. Here, we describe (https://github.com/kordastilab/ImmunoCluster), an R package for immune profiling cellular heterogeneity in high-dimensional liquid and imaging mass cytometry, and flow cytometry data, designed to facilitate computational analysis by a nonspecialist. The analysis framework implemented within is readily scalable to millions of cells and provides a variety of visualization and analytical approaches, as well as a rich array of plotting tools that can be tailored to users' needs. The protocol consists of three core computational stages: (1) data import and quality control; (2) dimensionality reduction and unsupervised clustering; and (3) annotation and differential testing, all contained within an R-based open-source framework.
高维流式细胞术是一种用于健康和疾病免疫监测的创新工具,它为各种疾病的基础生物学和生物标志物提供了新的见解。然而,大型多参数数据集的分析通常需要专业的计算知识。在这里,我们描述了 (https://github.com/kordastilab/ImmunoCluster),这是一个用于高维液质和成像流式细胞术和流式细胞术数据免疫分析细胞异质性的 R 包,旨在为非专业人士提供计算分析的便利。 中实现的分析框架易于扩展到数百万个细胞,并提供了多种可视化和分析方法,以及丰富的绘图工具,可以根据用户的需求进行定制。该方案包括三个核心计算阶段:(1)数据导入和质量控制;(2)降维和无监督聚类;(3)注释和差异测试,所有这些都包含在基于 R 的开源框架中。