Health Informatics, University of California, San Francisco, San Francisco, California.
Center for Clinical Informatics and Improvement Research, University of California, San Francisco, San Francisco, California.
J Hosp Med. 2021 Jul;16(7):404-408. doi: 10.12788/jhm.3607.
Medical training programs across the country are bound to a set of work hour regulations, generally monitored via self-report.
We developed a computational method to automate measurement of intern and resident work hours, which we validated against self-report.
DESIGN, SETTING, AND PARTICIPANTS: We included all electronic health record (EHR) access log data between July 1, 2018, and June 30, 2019, for trainees enrolled in the internal medicine training program. We inferred the duration of continuous in-hospital work hours by linking EHR sessions that occurred within 5 hours as "on-campus" work and further accounted for "out-of-hospital" work which might be taking place at home.
We compared daily work hours estimated through the computational method with self-report and calculated the mean absolute error between the two groups. We used the computational method to estimate average weekly work hours across the rotation and the percentage of rotations where average work hours exceed the 80-hour workweek.
The mean absolute error between self-reported and EHR-derived daily work hours for first- (PGY-1), second- (PGY-2), and third- (PGY-3) year trainees were 1.27, 1.51, and 1.51 hours, respectively. Using this computational method, we estimated average (SD) weekly work hours of 57.0 (21.7), 69.9 (12.2), and 64.1 (16.3) for PGY-1, PGY-2, and PGY-3 residents.
EHR log data can be used to accurately approximate self-report of work hours, accounting for both in-hospital and out-of-hospital work. Automation will reduce trainees' clerical work, improve consistency and comparability of data, and provide more complete and timely data that training programs need.
全国各地的医学培训计划都受到一套工作时间规定的约束,这些规定通常通过自我报告来监测。
我们开发了一种计算方法来自动测量实习医生和住院医生的工作时间,并通过自我报告对其进行验证。
设计、设置和参与者:我们纳入了 2018 年 7 月 1 日至 2019 年 6 月 30 日期间参加内科培训计划的受训者的所有电子健康记录 (EHR) 访问日志数据。我们通过将在 5 小时内发生的 EHR 会话链接起来,推断出连续住院工作时间的持续时间,这些会话被认为是“校内”工作,并且进一步考虑了可能在家中进行的“校外”工作。
我们比较了通过计算方法估计的每日工作时间与自我报告,并计算了两组之间的平均绝对误差。我们使用计算方法估计整个轮转的平均每周工作时间以及平均工作时间超过每周 80 小时的轮转百分比。
第一年 (PGY-1)、第二年 (PGY-2) 和第三年 (PGY-3) 受训者的自我报告和 EHR 衍生的每日工作时间之间的平均绝对误差分别为 1.27 小时、1.51 小时和 1.51 小时。使用这种计算方法,我们估计 PGY-1、PGY-2 和 PGY-3 住院医生的平均(SD)每周工作时间分别为 57.0(21.7)、69.9(12.2)和 64.1(16.3)。
EHR 日志数据可用于准确估计自我报告的工作时间,同时考虑到院内和院外工作。自动化将减少受训者的文书工作,提高数据的一致性和可比性,并提供培训计划所需的更完整和及时的数据。