Suppr超能文献

使用StarDrop™自动建模器™开发一种用于预测食品香料化学品Ames致突变性的新型定量构效关系模型。

Development of a new quantitative structure-activity relationship model for predicting Ames mutagenicity of food flavor chemicals using StarDrop™ auto-Modeller™.

作者信息

Kasamatsu Toshio, Kitazawa Airi, Tajima Sumie, Kaneko Masahiro, Sugiyama Kei-Ichi, Yamada Masami, Yasui Manabu, Masumura Kenichi, Horibata Katsuyoshi, Honma Masamitsu

机构信息

Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki city, Kanagawa, Japan.

HULINKS Inc., Chuo city, Tokyo, Japan.

出版信息

Genes Environ. 2021 Apr 30;43(1):16. doi: 10.1186/s41021-021-00182-6.

Abstract

BACKGROUND

Food flavors are relatively low molecular weight chemicals with unique odor-related functional groups that may also be associated with mutagenicity. These chemicals are often difficult to test for mutagenicity by the Ames test because of their low production and peculiar odor. Therefore, application of the quantitative structure-activity relationship (QSAR) approach is being considered. We used the StarDrop™ Auto-Modeller™ to develop a new QSAR model.

RESULTS

In the first step, we developed a new robust Ames database of 406 food flavor chemicals consisting of existing Ames flavor chemical data and newly acquired Ames test data. Ames results for some existing flavor chemicals have been revised by expert reviews. We also collected 428 Ames test datasets for industrial chemicals from other databases that are structurally similar to flavor chemicals. A total of 834 chemicals' Ames test datasets were used to develop the new QSAR models. We repeated the development and verification of prototypes by selecting appropriate modeling methods and descriptors and developed a local QSAR model. A new QSAR model "StarDrop NIHS 834_67" showed excellent performance (sensitivity: 79.5%, specificity: 96.4%, accuracy: 94.6%) for predicting Ames mutagenicity of 406 food flavors and was better than other commercial QSAR tools.

CONCLUSIONS

A local QSAR model, StarDrop NIHS 834_67, was customized to predict the Ames mutagenicity of food flavor chemicals and other low molecular weight chemicals. The model can be used to assess the mutagenicity of food flavors without actual testing.

摘要

背景

食品香料是相对低分子量的化学物质,具有独特的与气味相关的官能团,这些官能团也可能与致突变性有关。由于这些化学物质产量低且气味特殊,通常难以通过艾姆斯试验检测其致突变性。因此,正在考虑应用定量构效关系(QSAR)方法。我们使用StarDrop™ Auto-Modeller™开发了一个新的QSAR模型。

结果

第一步,我们开发了一个新的强大的包含406种食品香料化学物质的艾姆斯数据库,该数据库由现有的艾姆斯香料化学数据和新获得的艾姆斯试验数据组成。一些现有香料化学物质的艾姆斯试验结果已通过专家评审进行了修订。我们还从其他数据库收集了428个与香料化学物质结构相似的工业化学品的艾姆斯试验数据集。总共834种化学物质的艾姆斯试验数据集用于开发新的QSAR模型。我们通过选择合适的建模方法和描述符重复了原型的开发和验证,并开发了一个局部QSAR模型。一个新的QSAR模型“StarDrop NIHS 834_67”在预测406种食品香料的艾姆斯致突变性方面表现出色(灵敏度:79.5%,特异性:96.4%,准确率:94.6%),并且优于其他商业QSAR工具。

结论

定制了一个局部QSAR模型StarDrop NIHS 834_67,用于预测食品香料化学物质和其他低分子量化学物质的艾姆斯致突变性。该模型可用于在无需实际测试的情况下评估食品香料的致突变性。

相似文献

4
Evaluation of QSAR models for predicting mutagenicity: outcome of the Second Ames/QSAR international challenge project.
SAR QSAR Environ Res. 2023 Oct-Dec;34(12):983-1001. doi: 10.1080/1062936X.2023.2284902. Epub 2023 Dec 4.
5
Machine learning - Predicting Ames mutagenicity of small molecules.
J Mol Graph Model. 2021 Dec;109:108011. doi: 10.1016/j.jmgm.2021.108011. Epub 2021 Sep 5.
6
Validation of the (Q)SAR combination approach for mutagenicity prediction of flavor chemicals.
Food Chem Toxicol. 2012 May;50(5):1538-46. doi: 10.1016/j.fct.2012.02.009. Epub 2012 Feb 17.
7
A large comparison of integrated SAR/QSAR models of the Ames test for mutagenicity.
SAR QSAR Environ Res. 2018 Aug;29(8):591-611. doi: 10.1080/1062936X.2018.1497702. Epub 2018 Jul 27.
8
Multiple Instance Learning Improves Ames Mutagenicity Prediction for Problematic Molecular Species.
Chem Res Toxicol. 2023 Aug 21;36(8):1227-1237. doi: 10.1021/acs.chemrestox.2c00372. Epub 2023 Jul 21.
10
A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities.
Toxicol Appl Pharmacol. 2013 Dec 15;273(3):427-34. doi: 10.1016/j.taap.2013.09.015. Epub 2013 Sep 30.

引用本文的文献

1
Synthesis and mutagenic risk of avanafil's potential genotoxic impurities.
RSC Adv. 2024 Jul 8;14(30):21432-21438. doi: 10.1039/d4ra02345e. eCollection 2024 Jul 5.
2
Genotoxicity assessment of food-flavoring chemicals used in Japan.
Toxicol Rep. 2022 Apr 27;9:1008-1012. doi: 10.1016/j.toxrep.2022.04.026. eCollection 2022.
3
Virtual Screening-Based Drug Development for the Treatment of Nervous System Diseases.
Curr Neuropharmacol. 2023;21(12):2447-2464. doi: 10.2174/1570159X20666220830105350.
4
In vivo and in vitro mutagenicity of perillaldehyde and cinnamaldehyde.
Genes Environ. 2021 Jul 16;43(1):30. doi: 10.1186/s41021-021-00204-3.

本文引用的文献

2
An assessment of mutagenicity of chemical substances by (quantitative) structure-activity relationship.
Genes Environ. 2020 Jul 2;42:23. doi: 10.1186/s41021-020-00163-1. eCollection 2020.
3
Transitioning to composite bacterial mutagenicity models in ICH M7 (Q)SAR analyses.
Regul Toxicol Pharmacol. 2019 Dec;109:104488. doi: 10.1016/j.yrtph.2019.104488. Epub 2019 Oct 3.
5
It's difficult, but important, to make negative predictions.
Regul Toxicol Pharmacol. 2016 Apr;76:79-86. doi: 10.1016/j.yrtph.2016.01.008. Epub 2016 Jan 16.
6
Evaluation of a statistics-based Ames mutagenicity QSAR model and interpretation of the results obtained.
Regul Toxicol Pharmacol. 2016 Apr;76:7-20. doi: 10.1016/j.yrtph.2015.12.006. Epub 2015 Dec 18.
7
The Japan Flavour and Fragrance Materials Association's (JFFMA) safety assessment of acetal food flavouring substances uniquely used in Japan.
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32(9):1384-96. doi: 10.1080/19440049.2015.1067927. Epub 2015 Aug 14.
8
Validation of the (Q)SAR combination approach for mutagenicity prediction of flavor chemicals.
Food Chem Toxicol. 2012 May;50(5):1538-46. doi: 10.1016/j.fct.2012.02.009. Epub 2012 Feb 17.
9
Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology.
Chem Rev. 2011 Apr 13;111(4):2507-36. doi: 10.1021/cr100222q. Epub 2011 Jan 25.
10
Benchmark data set for in silico prediction of Ames mutagenicity.
J Chem Inf Model. 2009 Sep;49(9):2077-81. doi: 10.1021/ci900161g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验