Kasamatsu Toshio, Kitazawa Airi, Tajima Sumie, Kaneko Masahiro, Sugiyama Kei-Ichi, Yamada Masami, Yasui Manabu, Masumura Kenichi, Horibata Katsuyoshi, Honma Masamitsu
Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki city, Kanagawa, Japan.
HULINKS Inc., Chuo city, Tokyo, Japan.
Genes Environ. 2021 Apr 30;43(1):16. doi: 10.1186/s41021-021-00182-6.
Food flavors are relatively low molecular weight chemicals with unique odor-related functional groups that may also be associated with mutagenicity. These chemicals are often difficult to test for mutagenicity by the Ames test because of their low production and peculiar odor. Therefore, application of the quantitative structure-activity relationship (QSAR) approach is being considered. We used the StarDrop™ Auto-Modeller™ to develop a new QSAR model.
In the first step, we developed a new robust Ames database of 406 food flavor chemicals consisting of existing Ames flavor chemical data and newly acquired Ames test data. Ames results for some existing flavor chemicals have been revised by expert reviews. We also collected 428 Ames test datasets for industrial chemicals from other databases that are structurally similar to flavor chemicals. A total of 834 chemicals' Ames test datasets were used to develop the new QSAR models. We repeated the development and verification of prototypes by selecting appropriate modeling methods and descriptors and developed a local QSAR model. A new QSAR model "StarDrop NIHS 834_67" showed excellent performance (sensitivity: 79.5%, specificity: 96.4%, accuracy: 94.6%) for predicting Ames mutagenicity of 406 food flavors and was better than other commercial QSAR tools.
A local QSAR model, StarDrop NIHS 834_67, was customized to predict the Ames mutagenicity of food flavor chemicals and other low molecular weight chemicals. The model can be used to assess the mutagenicity of food flavors without actual testing.
食品香料是相对低分子量的化学物质,具有独特的与气味相关的官能团,这些官能团也可能与致突变性有关。由于这些化学物质产量低且气味特殊,通常难以通过艾姆斯试验检测其致突变性。因此,正在考虑应用定量构效关系(QSAR)方法。我们使用StarDrop™ Auto-Modeller™开发了一个新的QSAR模型。
第一步,我们开发了一个新的强大的包含406种食品香料化学物质的艾姆斯数据库,该数据库由现有的艾姆斯香料化学数据和新获得的艾姆斯试验数据组成。一些现有香料化学物质的艾姆斯试验结果已通过专家评审进行了修订。我们还从其他数据库收集了428个与香料化学物质结构相似的工业化学品的艾姆斯试验数据集。总共834种化学物质的艾姆斯试验数据集用于开发新的QSAR模型。我们通过选择合适的建模方法和描述符重复了原型的开发和验证,并开发了一个局部QSAR模型。一个新的QSAR模型“StarDrop NIHS 834_67”在预测406种食品香料的艾姆斯致突变性方面表现出色(灵敏度:79.5%,特异性:96.4%,准确率:94.6%),并且优于其他商业QSAR工具。
定制了一个局部QSAR模型StarDrop NIHS 834_67,用于预测食品香料化学物质和其他低分子量化学物质的艾姆斯致突变性。该模型可用于在无需实际测试的情况下评估食品香料的致突变性。