Honma Masamitsu
National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kanagawa 210-9501 Japan.
Genes Environ. 2020 Jul 2;42:23. doi: 10.1186/s41021-020-00163-1. eCollection 2020.
Currently, there are more than 100,000 industrial chemicals substances produced and present in our living environments. Some of them may have adverse effects on human health. Given the rapid expansion in the number of industrial chemicals, international organizations and regulatory authorities have expressed the need for effective screening tools to promptly and accurately identify chemical substances with potential adverse effects without conducting actual toxicological studies. (Quantitative) Structure-Activity Relationship ((Q)SAR) is a promising approach to predict the potential adverse effects of a chemical on the basis of its chemical structure. Significant effort has been devoted to the development of (Q) SAR models for predicting Ames mutagenicity, among other toxicological endpoints, owing to the significant amount of the necessary Ames test data that have already been accumulated. The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) M7 guideline for the assessment and control of mutagenic impurities in pharmaceuticals was established in 2014. It is the first international guideline that addresses the use of (Q) SAR instead of actual toxicological studies for human health assessment. Therefore, (Q) SAR for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals. This review introduces the advantages and features of (Q)SAR. Several (Q) SAR tools for predicting Ames mutagenicity and approaches to improve (Q) SAR models are also reviewed. Finally, I mention the future of (Q) SAR and other advanced in silico technology in genetic toxicology.
目前,有超过10万种工业化学物质在我们的生活环境中产生并存在。其中一些可能对人类健康产生不利影响。鉴于工业化学品数量的迅速增加,国际组织和监管机构表示需要有效的筛选工具,以便在不进行实际毒理学研究的情况下迅速准确地识别具有潜在不利影响的化学物质。(定量)构效关系((Q)SAR)是一种基于化学结构预测化学品潜在不利影响的有前途的方法。由于已经积累了大量必要的艾姆斯试验数据,人们在开发用于预测艾姆斯致突变性及其他毒理学终点的(Q)SAR模型方面投入了大量精力。人用药品注册技术协调国际会议(ICH)于2014年制定了关于药品中致突变杂质评估和控制的M7指南。这是第一个涉及使用(Q)SAR而非实际毒理学研究进行人类健康评估的国际指南。因此,用于艾姆斯致突变性的(Q)SAR现在需要更高的预测能力来识别致突变化学品。本综述介绍了(Q)SAR的优点和特点。还综述了几种用于预测艾姆斯致突变性的(Q)SAR工具以及改进(Q)SAR模型的方法。最后,我提到了(Q)SAR和遗传毒理学中其他先进的计算机模拟技术的未来。