Suppr超能文献

人体模型中冠状动脉钙化的全自动定量方法(FQM)

Fully automated quantification method (FQM) of coronary calcium in an anthropomorphic phantom.

作者信息

van Praagh Gijs D, van der Werf Niels R, Wang Jia, van Ommen Fasco, Poelhekken Keris, Slart Riemer H J A, Fleischmann Dominik, Greuter Marcel J W, Leiner Tim, Willemink Martin J

机构信息

Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Med Phys. 2021 Jul;48(7):3730-3740. doi: 10.1002/mp.14912. Epub 2021 May 17.

Abstract

OBJECTIVE

Coronary artery calcium (CAC) score is a strong predictor for future adverse cardiovascular events. Anthropomorphic phantoms are often used for CAC studies on computed tomography (CT) to allow for evaluation or variation of scanning or reconstruction parameters within or across scanners against a reference standard. This often results in large number of datasets. Manual assessment of these large datasets is time consuming and cumbersome. Therefore, this study aimed to develop and validate a fully automated, open-source quantification method (FQM) for coronary calcium in a standardized phantom.

MATERIALS AND METHODS

A standard, commercially available anthropomorphic thorax phantom was used with an insert containing nine calcifications with different sizes and densities. To simulate two different patient sizes, an extension ring was used. Image data were acquired with four state-of-the-art CT systems using routine CAC scoring acquisition protocols. For interscan variability, each acquisition was repeated five times with small translations and/or rotations. Vendor-specific CAC scores (Agatston, volume, and mass) were calculated as reference scores using vendor-specific software. Both the international standard CAC quantification methods as well as vendor-specific adjustments were implemented in FQM. Reference and FQM scores were compared using Bland-Altman analysis, intraclass correlation coefficients, risk reclassifications, and Cohen's kappa. Also, robustness of FQM was assessed using varied acquisitions and reconstruction settings and validation on a dynamic phantom. Further, image quality metrics were implemented: noise power spectrum, task transfer function, and contrast- and signal-to-noise ratio among others. Results were validated using imQuest software.

RESULTS

Three parameters in CAC scoring methods varied among the different vendor-specific software packages: the Hounsfield unit (HU) threshold, the minimum area used to designate a group of voxels as calcium, and the usage of isotropic voxels for the volume score. The FQM was in high agreement with vendor-specific scores and ICC's (median [95% CI]) were excellent (1.000 [0.999-1.000] to 1.000 [1.000-1.000]). An excellent interplatform reliability of κ = 0.969 and κ = 0.973 was found. TTF results gave a maximum deviation of 3.8% and NPS results were comparable to imQuest.

CONCLUSIONS

We developed a fully automated, open-source, robust method to quantify CAC on CT scans in a commercially available phantom. Also, the automated algorithm contains image quality assessment for fast comparison of differences in acquisition and reconstruction parameters.

摘要

目的

冠状动脉钙化(CAC)评分是未来不良心血管事件的有力预测指标。人体模型常用于计算机断层扫描(CT)的CAC研究,以便根据参考标准评估扫描仪内部或不同扫描仪之间扫描或重建参数的变化。这通常会产生大量数据集。手动评估这些大量数据集既耗时又繁琐。因此,本研究旨在开发并验证一种用于标准化体模中冠状动脉钙化的全自动开源量化方法(FQM)。

材料与方法

使用一个标准的市售人体胸部模型,其中包含一个插入物,该插入物有九个大小和密度不同的钙化灶。为模拟两种不同的患者体型,使用了一个扩展环。使用四种先进的CT系统,按照常规CAC评分采集协议获取图像数据。为评估扫描间的变异性,每次采集均进行五次小幅平移和/或旋转重复。使用特定厂商的软件计算特定厂商的CAC评分(阿加斯顿评分、体积评分和质量评分)作为参考评分。FQM中既实现了国际标准的CAC量化方法,也实现了特定厂商的调整。使用布兰德-奥特曼分析、组内相关系数、风险重新分类和科恩kappa系数比较参考评分和FQM评分。此外,使用不同的采集和重建设置评估FQM的稳健性,并在动态体模上进行验证。此外,还实施了图像质量指标:噪声功率谱、任务传递函数以及对比度和信噪比等。使用imQuest软件验证结果。

结果

CAC评分方法中的三个参数在不同的特定厂商软件包之间有所不同:亨氏单位(HU)阈值、用于将一组体素指定为钙化的最小面积,以及体积评分中各向同性体素的使用。FQM与特定厂商的评分高度一致,组内相关系数(ICC,中位数[95%CI])非常出色(1.000[0.999 - 1.000]至1.000[1.000 - 1.000])。发现κ = 0.969和κ = 0.973具有出色的平台间可靠性。任务传递函数(TTF)结果的最大偏差为3.8%,噪声功率谱(NPS)结果与imQuest相当。

结论

我们开发了一种全自动、开源、稳健的方法,用于在市售体模的CT扫描上量化CAC。此外,该自动算法包含图像质量评估,可快速比较采集和重建参数的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fc7/8360117/944707053a74/MP-48-3730-g004.jpg

相似文献

1
Fully automated quantification method (FQM) of coronary calcium in an anthropomorphic phantom.
Med Phys. 2021 Jul;48(7):3730-3740. doi: 10.1002/mp.14912. Epub 2021 May 17.
2
Coronary calcium scores are systematically underestimated at a large chest size: A multivendor phantom study.
J Cardiovasc Comput Tomogr. 2015 Sep-Oct;9(5):415-21. doi: 10.1016/j.jcct.2015.03.010. Epub 2015 Apr 2.
3
Coronary artery calcium quantification on first, second and third generation dual source CT: A comparison study.
J Cardiovasc Comput Tomogr. 2017 Nov;11(6):444-448. doi: 10.1016/j.jcct.2017.09.002. Epub 2017 Sep 8.
4
Coronary calcium scoring potential of large field-of-view spectral photon-counting CT: a phantom study.
Eur Radiol. 2022 Jan;32(1):152-162. doi: 10.1007/s00330-021-08152-w. Epub 2021 Jul 13.
5
Evaluation of an artificial intelligence coronary artery calcium scoring model from computed tomography.
Eur Radiol. 2023 Jan;33(1):321-329. doi: 10.1007/s00330-022-09028-3. Epub 2022 Aug 20.
7
Automated coronary artery calcification scoring in non-gated chest CT: agreement and reliability.
PLoS One. 2014 Mar 13;9(3):e91239. doi: 10.1371/journal.pone.0091239. eCollection 2014.
8
Improved coronary calcium detection and quantification with low-dose full field-of-view photon-counting CT: a phantom study.
Eur Radiol. 2022 May;32(5):3447-3457. doi: 10.1007/s00330-021-08421-8. Epub 2022 Jan 8.
10
Coronary calcium scoring with partial volume correction in anthropomorphic thorax phantom and screening chest CT images.
PLoS One. 2018 Dec 20;13(12):e0209318. doi: 10.1371/journal.pone.0209318. eCollection 2018.

引用本文的文献

2
Coronary artery calcium quantification technique using dual energy material decomposition: a simulation study.
Int J Cardiovasc Imaging. 2024 Jul;40(7):1465-1474. doi: 10.1007/s10554-024-03124-9. Epub 2024 Jun 21.
3
Halved contrast medium dose coronary dual-layer CT-angiography - phantom study of tube current and patient characteristics.
Int J Cardiovasc Imaging. 2024 Apr;40(4):931-940. doi: 10.1007/s10554-024-03062-6. Epub 2024 Feb 22.
5
Coronary artery calcium mass measurement based on integrated intensity and volume fraction techniques.
J Med Imaging (Bellingham). 2023 Jul;10(4):043502. doi: 10.1117/1.JMI.10.4.043502. Epub 2023 Jul 10.
9
Reproducibility of coronary artery calcium quantification on dual-source CT and dual-source photon-counting CT: a dynamic phantom study.
Int J Cardiovasc Imaging. 2022 Jul;38(7):1613-1619. doi: 10.1007/s10554-022-02540-z. Epub 2022 Feb 3.

本文引用的文献

1
Spectral photon-counting CT in cardiovascular imaging.
J Cardiovasc Comput Tomogr. 2021 May-Jun;15(3):218-225. doi: 10.1016/j.jcct.2020.12.005. Epub 2020 Dec 21.
2
Dose reduction for CT coronary calcium scoring with a calcium-aware image reconstruction technique: a phantom study.
Eur Radiol. 2020 Jun;30(6):3346-3355. doi: 10.1007/s00330-020-06709-9. Epub 2020 Feb 19.
3
Direct Automatic Coronary Calcium Scoring in Cardiac and Chest CT.
IEEE Trans Med Imaging. 2019 Sep;38(9):2127-2138. doi: 10.1109/TMI.2019.2899534. Epub 2019 Feb 18.
4
Coronary Artery Calcium Scoring: Current Status and Review of Literature.
J Comput Assist Tomogr. 2018 Nov/Dec;42(6):887-897. doi: 10.1097/RCT.0000000000000825.
5
Coronary artery calcium: A technical argument for a new scoring method.
J Cardiovasc Comput Tomogr. 2019 Nov-Dec;13(6):347-352. doi: 10.1016/j.jcct.2018.10.014. Epub 2018 Oct 19.
7
Coronary Calcium Score and Cardiovascular Risk.
J Am Coll Cardiol. 2018 Jul 24;72(4):434-447. doi: 10.1016/j.jacc.2018.05.027.
8
Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.
Med Phys. 2018 Jul;45(7):3031-3042. doi: 10.1002/mp.12959. Epub 2018 May 28.
9
Automatic Calcium Scoring in Low-Dose Chest CT Using Deep Neural Networks With Dilated Convolutions.
IEEE Trans Med Imaging. 2018 Feb;37(2):615-625. doi: 10.1109/TMI.2017.2769839.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验