Suppr超能文献

基于 CT 的人工智能冠状动脉钙化评分模型评估。

Evaluation of an artificial intelligence coronary artery calcium scoring model from computed tomography.

机构信息

Department of Cardiology, Fiona Stanley Hospital, Perth, Australia.

Harry Perkins Institute of Medical Research, Curtin University, Perth, Australia.

出版信息

Eur Radiol. 2023 Jan;33(1):321-329. doi: 10.1007/s00330-022-09028-3. Epub 2022 Aug 20.

Abstract

OBJECTIVES

Coronary artery calcium (CAC) scores derived from computed tomography (CT) scans are used for cardiovascular risk stratification. Artificial intelligence (AI) can assist in CAC quantification and potentially reduce the time required for human analysis. This study aimed to develop and evaluate a fully automated model that identifies and quantifies CAC.

METHODS

Fully convolutional neural networks for automated CAC scoring were developed and trained on 2439 cardiac CT scans and validated using 771 scans. The model was tested on an independent set of 1849 cardiac CT scans. Agatston CAC scores were further categorised into five risk categories (0, 1-10, 11-100, 101-400, and > 400). Automated scores were compared to the manual reference standard (level 3 expert readers).

RESULTS

Of 1849 scans used for model testing (mean age 55.7 ± 10.5 years, 49% males), the automated model detected the presence of CAC in 867 (47%) scans compared with 815 (44%) by human readers (p = 0.09). CAC scores from the model correlated very strongly with the manual score (Spearman's r = 0.90, 95% confidence interval [CI] 0.89-0.91, p < 0.001 and intraclass correlation coefficient = 0.98, 95% CI 0.98-0.99, p < 0.001). The model classified 1646 (89%) into the same risk category as human observers. The Bland-Altman analysis demonstrated little difference (1.69, 95% limits of agreement: -41.22, 44.60) and there was almost excellent agreement (Cohen's κ = 0.90, 95% CI 0.88-0.91, p < 0.001). Model analysis time was 13.1 ± 3.2 s/scan.

CONCLUSIONS

This artificial intelligence-based fully automated CAC scoring model shows high accuracy and low analysis times. Its potential to optimise clinical workflow efficiency and patient outcomes requires evaluation.

KEY POINTS

• Coronary artery calcium (CAC) scores are traditionally assessed using cardiac computed tomography and require manual input by human operators to identify calcified lesions. • A novel artificial intelligence (AI)-based model for fully automated CAC scoring was developed and tested on an independent dataset of computed tomography scans, showing very high levels of correlation and agreement with manual measurements as a reference standard. • AI has the potential to assist in the identification and quantification of CAC, thereby reducing the time required for human analysis.

摘要

目的

冠状动脉钙(CAC)评分来源于计算机断层扫描(CT),可用于心血管风险分层。人工智能(AI)可辅助 CAC 定量分析,并且可能减少人工分析所需的时间。本研究旨在开发并评估一种全自动模型,以识别和定量 CAC。

方法

我们开发了用于自动 CAC 评分的全卷积神经网络,并在 2439 例心脏 CT 扫描中进行了训练和验证,并在 771 例扫描中进行了验证。该模型在 1849 例独立的心脏 CT 扫描中进行了测试。Agatston CAC 评分进一步分为五个风险类别(0、1-10、11-100、101-400 和>400)。自动评分与手动参考标准(3 级专家读者)进行了比较。

结果

在用于模型测试的 1849 例扫描中(平均年龄 55.7±10.5 岁,49%为男性),与人工读者(44%)相比,自动模型检测到 867 例(47%)存在 CAC(p=0.09)。模型的 CAC 评分与手动评分非常强相关(Spearman's r=0.90,95%置信区间[CI]0.89-0.91,p<0.001,组内相关系数=0.98,95%CI 0.98-0.99,p<0.001)。模型将 1646 例(89%)分类为与人工观察者相同的风险类别。Bland-Altman 分析表明差异较小(1.69,95%一致性界限:-41.22,44.60),且几乎具有极好的一致性(Cohen's κ=0.90,95%CI 0.88-0.91,p<0.001)。模型分析时间为 13.1±3.2 秒/扫描。

结论

基于人工智能的全自动 CAC 评分模型具有较高的准确性和较短的分析时间。需要评估其优化临床工作流程效率和患者结局的潜力。

关键点

  1. 冠状动脉钙(CAC)评分传统上使用心脏计算机断层扫描进行评估,需要人工操作员手动输入以识别钙化病变。

  2. 开发了一种新的基于人工智能的全自动 CAC 评分模型,并在独立的计算机断层扫描数据集上进行了测试,与手动测量作为参考标准相比,其相关性和一致性水平非常高。

  3. AI 有可能辅助 CAC 的识别和定量分析,从而减少人工分析所需的时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ff/9755106/e0e6cb0950b7/330_2022_9028_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验