Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA.
Department of Kinesiology, Kansas State University, Manhattan, Kansas, USA.
Physiol Rep. 2021 Apr;9(8):e14803. doi: 10.14814/phy2.14803.
ATP-sensitive K channels (K ) have been implicated in the regulation of resting vascular smooth muscle membrane potential and tone. However, whether K channels modulate skeletal muscle microvascular hemodynamics at the capillary level (the primary site for blood-myocyte O exchange) remains unknown. We tested the hypothesis that K channel inhibition would reduce the proportion of capillaries supporting continuous red blood cell (RBC) flow and impair RBC hemodynamics and distribution in perfused capillaries within resting skeletal muscle. RBC flux (f ), velocity (V ), and capillary tube hematocrit (Hct ) were assessed via intravital microscopy of the rat spinotrapezius muscle (n = 6) under control (CON) and glibenclamide (GLI; K channel antagonist; 10 µM) superfusion conditions. There were no differences in mean arterial pressure (CON:120 ± 5, GLI:124 ± 5 mmHg; p > 0.05) or heart rate (CON:322 ± 32, GLI:337 ± 33 beats/min; p > 0.05) between conditions. The %RBC-flowing capillaries were not altered between conditions (CON:87 ± 2, GLI:85 ± 1%; p > 0.05). In RBC-perfused capillaries, GLI reduced f (CON:20.1 ± 1.8, GLI:14.6 ± 1.3 cells/s; p < 0.05) and V (CON:240 ± 17, GLI:182 ± 17 µm/s; p < 0.05) but not Hct (CON:0.26 ± 0.01, GLI:0.26 ± 0.01; p > 0.05). The absence of GLI effects on the %RBC-flowing capillaries and Hct indicates preserved muscle O diffusing capacity (DO m). In contrast, GLI lowered both f and V thus impairing perfusive microvascular O transport (Q̇m) and lengthening RBC capillary transit times, respectively. Given the interdependence between diffusive and perfusive O conductances (i.e., %O extraction∝DO m/Q̇m), such GLI alterations are expected to elevate muscle %O extraction to sustain a given metabolic rate. These results support that K channels regulate capillary hemodynamics and, therefore, microvascular gas exchange in resting skeletal muscle.
三磷酸腺苷敏感性钾通道(K 通道)被认为参与了调节静息血管平滑肌膜电位和张力。然而,K 通道是否调节骨骼肌微血管在毛细血管水平的血液-肌细胞 O 交换的主要部位)的血液动力学仍不清楚。我们假设 K 通道抑制会减少支持连续红细胞(RBC)流动的毛细血管比例,并损害在静息骨骼肌中灌注的毛细血管中的 RBC 血液动力学和分布。通过对大鼠斜方肌(n=6)的活体显微镜检查,评估 RBC 通量(f)、速度(V)和毛细血管管腔血细胞比容(Hct),在对照(CON)和格列本脲(GLI;K 通道拮抗剂;10 μM)灌注条件下。两种条件下的平均动脉压(CON:120±5,GLI:124±5mmHg;p>0.05)或心率(CON:322±32,GLI:337±33 次/分钟;p>0.05)均无差异。在条件之间,RBC 流动的毛细血管比例没有改变(CON:87±2,GLI:85±1%;p>0.05)。在 RBC 灌注的毛细血管中,GLI 降低了 f(CON:20.1±1.8,GLI:14.6±1.3 个细胞/s;p<0.05)和 V(CON:240±17,GLI:182±17 μm/s;p<0.05),但不影响 Hct(CON:0.26±0.01,GLI:0.26±0.01;p>0.05)。GLI 对 RBC 流动的毛细血管比例和 Hct 没有影响,表明肌肉 O 扩散能力(DO m)得到保留。相比之下,GLI 降低了 f 和 V,从而分别损害了灌注性微血管 O 运输(Q̇m)和延长了 RBC 毛细血管通过时间。鉴于扩散和灌注 O 电导之间的相互依赖性(即,%O 提取∝DO m/Q̇m),预计这种 GLI 改变会增加肌肉%O 提取以维持给定的代谢率。这些结果支持 K 通道调节静息骨骼肌毛细血管血液动力学和因此调节微血管气体交换。