Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA.
Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA.
J Physiol. 2020 Nov;598(21):4843-4858. doi: 10.1113/JP280232. Epub 2020 Sep 1.
Oral sulphonylureas, widely prescribed for diabetes, inhibit pancreatic ATP-sensitive K (K ) channels to increase insulin release. However, K channels are also located within vascular (endothelium and smooth muscle) and muscle (cardiac and skeletal) tissue. We evaluated left ventricular function at rest, maximal aerobic capacity ( O max) and submaximal exercise tolerance (i.e. speed-duration relationship) during treadmill running in rats, before and after systemic K channel inhibition via glibenclamide. Glibenclamide impaired critical speed proportionally more than O max but did not alter resting cardiac output. Vascular K channel function (topical glibenclamide superfused onto hindlimb skeletal muscle) resolved a decreased blood flow and interstitial PO during twitch contractions reflecting impaired O delivery-to-utilization matching. Our findings demonstrate that systemic K channel inhibition reduces O max and critical speed during treadmill running in rats due, in part, to impaired convective and diffusive O delivery, and thus O , especially within fast-twitch oxidative skeletal muscle.
Vascular ATP-sensitive K (K ) channels support skeletal muscle blood flow and microvascular oxygen delivery-to-utilization matching during exercise. However, oral sulphonylurea treatment for diabetes inhibits pancreatic K channels to enhance insulin release. Herein we tested the hypotheses that: i) systemic K channel inhibition via glibenclamide (GLI; 10 mg kg i.p.) would decrease cardiac output at rest (echocardiography), maximal aerobic capacity ( O max) and the speed-duration relationship (i.e. lower critical speed (CS)) during treadmill running; and ii) local K channel inhibition (5 mg kg GLI superfusion) would decrease blood flow (15 µm microspheres), interstitial space oxygen pressures (PO is; phosphorescence quenching) and convective and diffusive O transport ( O and DO , respectively; Fick Principle and Law of Diffusion) in contracting fast-twitch oxidative mixed gastrocnemius muscle (MG: 9% type I+IIa fibres). At rest, GLI slowed left ventricular relaxation (2.11 ± 0.59 vs. 1.70 ± 0.23 cm s ) and decreased heart rate (321 ± 23 vs. 304 ± 22 bpm, both P < 0.05) while cardiac output remained unaltered (219 ± 64 vs. 197 ± 39 ml min , P > 0.05). During exercise, GLI reduced O max (71.5 ± 3.1 vs. 67.9 ± 4.8 ml kg min ) and CS (35.9 ± 2.4 vs. 31.9 ± 3.1 m min , both P < 0.05). Local K channel inhibition decreased MG blood flow (52 ± 25 vs. 34 ± 13 ml min 100 g tissue ) and PO is (5.9 ± 0.9 vs. 4.7 ± 1.1 mmHg) during twitch contractions. Furthermore, MG O was reduced via impaired O and DO (P < 0.05 for each). Collectively, these data support that vascular K channels help sustain submaximal exercise tolerance in healthy rats. For patients taking sulfonylureas, K channel inhibition may exacerbate exercise intolerance.
广泛用于治疗糖尿病的口服磺酰脲类药物通过抑制胰腺 ATP 敏感性钾 (K ) 通道来增加胰岛素的释放。然而,K 通道也存在于血管(内皮和平滑肌)和肌肉(心脏和骨骼)组织中。我们在大鼠中评估了静息时的左心室功能、最大有氧能力( O max)和次最大运动耐量(即速度-持续时间关系),在全身 K 通道通过格列本脲抑制之前和之后。格列本脲抑制与 O max 相比,关键速度呈比例增加,但不改变静息心输出量。血管 K 通道功能(局部格列本脲灌流到后肢骨骼肌)解决了在收缩时的血流量和间质 PO 降低的问题,反映了 O 输送-利用匹配受损。我们的研究结果表明,全身 K 通道抑制会降低大鼠在跑步机上的 O max和关键速度,部分原因是由于输送和扩散 O 降低,从而降低了 O ,尤其是在快肌氧化型骨骼肌中。
血管 ATP 敏感性 K (K ) 通道在运动期间支持骨骼肌血流和微血管氧输送-利用匹配。然而,用于治疗糖尿病的口服磺酰脲类药物抑制胰腺 K 通道以增强胰岛素的释放。在此,我们检验了以下假设:i)通过格列本脲(GLI;10 mg kg 腹腔内注射)全身 K 通道抑制会降低在跑步机跑步时的静息心输出量(超声心动图)、最大有氧能力( O max)和速度-持续时间关系(即降低关键速度(CS));ii)局部 K 通道抑制(5 mg kg GLI 灌流)会降低血流(15 µm 微球)、间质空间氧压(PO is;磷光猝灭)以及收缩时的对流和扩散 O 转运( O 和 DO ,分别;Fick 原理和扩散定律)在收缩的快肌氧化混合比目鱼肌(MG:9% I+IIa 纤维)中。在静息时,GLI 减缓了左心室舒张(2.11 ± 0.59 比 1.70 ± 0.23 cm s)并降低了心率(321 ± 23 比 304 ± 22 bpm,均 P < 0.05),而心输出量保持不变(219 ± 64 比 197 ± 39 ml min,P > 0.05)。在运动期间,GLI 降低了 O max(71.5 ± 3.1 比 67.9 ± 4.8 ml kg min)和 CS(35.9 ± 2.4 比 31.9 ± 3.1 m min,均 P < 0.05)。局部 K 通道抑制降低了 MG 的血流(52 ± 25 比 34 ± 13 ml min 100 g 组织)和 PO is(5.9 ± 0.9 比 4.7 ± 1.1 mmHg)在抽搐收缩时。此外,MG 的 O 通过受损的 O 和 DO 降低(每个 P < 0.05)。总的来说,这些数据支持血管 K 通道有助于维持健康大鼠的次最大运动耐量。对于服用磺酰脲类药物的患者,K 通道抑制可能会加重运动不耐受。