Suppr超能文献

MIL归一化——准确的MRI放射组学分析的先决条件。

MIL normalization -- prerequisites for accurate MRI radiomics analysis.

作者信息

Hu Zhaoyu, Zhuang Qiyuan, Xiao Yang, Wu Guoqing, Shi Zhifeng, Chen Liang, Wang Yuanyuan, Yu Jinhua

机构信息

School of Information Science and Technology, Fudan University, Shanghai, China.

Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.

出版信息

Comput Biol Med. 2021 Jun;133:104403. doi: 10.1016/j.compbiomed.2021.104403. Epub 2021 Apr 15.

Abstract

The quality of magnetic resonance (MR) images obtained with different instruments and imaging parameters varies greatly. A large number of heterogeneous images are collected, and they suffer from acquisition variation. Such imaging quality differences will have a great impact on the radiomics analysis. The main differences in MR images include modality mismatch (M), intensity distribution variance (I), and layer-spacing differences (L), which are referred to as MIL differences in this paper for convenience. An MIL normalization system is proposed to reconstruct uneven MR images into high-quality data with complete modality, a uniform intensity distribution and consistent layer spacing. Three radiomics tasks, including tumor segmentation, pathological grading and genetic diagnosis of glioma, were used to verify the effect of MIL normalization on radiomics analysis. Three retrospective glioma datasets were analyzed in this study: BraTs (285 cases), TCGA (112 cases) and HuaShan (403 cases). They were used to test the effect of MIL on three different radiomics tasks, including tumor segmentation, pathological grading and genetic diagnosis. MIL normalization included three components: multimodal synthesis based on an encoder-decoder network, intensity normalization based on CycleGAN, and layer-spacing unification based on Statistical Parametric Mapping (SPM). The Dice similarity coefficient, areas under the curve (AUC) and six other indicators were calculated and compared after different normalization steps. The MIL normalization system can improved the Dice coefficient of segmentation by 9% (P < .001), the AUC of pathological grading by 32% (P < .001), and IDH1 status prediction by 25% (P < .001) when compared to non-normalization. The proposed MIL normalization system provides high-quality standardized data, which is a prerequisite for accurate radiomics analysis.

摘要

使用不同仪器和成像参数获得的磁共振(MR)图像质量差异很大。收集到大量异质性图像,且它们存在采集差异。这种成像质量差异会对放射组学分析产生很大影响。MR图像的主要差异包括模态不匹配(M)、强度分布方差(I)和层间距差异(L),为方便起见,本文将其称为MIL差异。提出了一种MIL归一化系统,将不均匀的MR图像重建为具有完整模态、均匀强度分布和一致层间距的高质量数据。使用包括胶质瘤的肿瘤分割、病理分级和基因诊断在内的三项放射组学任务来验证MIL归一化对放射组学分析的效果。本研究分析了三个回顾性胶质瘤数据集:BraTs(285例)、TCGA(112例)和华山(403例)。它们用于测试MIL对包括肿瘤分割、病理分级和基因诊断在内的三种不同放射组学任务的效果。MIL归一化包括三个组件:基于编码器 - 解码器网络的多模态合成、基于CycleGAN的强度归一化以及基于统计参数映射(SPM)的层间距统一。在不同归一化步骤后计算并比较了Dice相似系数、曲线下面积(AUC)和其他六个指标。与未归一化相比,MIL归一化系统可使分割的Dice系数提高9%(P <.001),病理分级的AUC提高32%(P <.001),IDH1状态预测提高25%(P <.001)。所提出的MIL归一化系统提供了高质量的标准化数据,这是准确放射组学分析的先决条件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验