Suppr超能文献

在酿酒酵母中,Dma1 和 Dma2 的催化依赖性和冗余作用在维持基因组稳定性方面。

Catalysis-dependent and redundant roles of Dma1 and Dma2 in maintenance of genome stability in Saccharomyces cerevisiae.

机构信息

Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.

Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100721. doi: 10.1016/j.jbc.2021.100721. Epub 2021 Apr 29.

Abstract

DNA double-strand breaks (DSBs) are among the deleterious lesions that are both endogenous and exogenous in origin and are repaired by nonhomologous end joining or homologous recombination. However, the molecular mechanisms responsible for maintaining genome stability remain incompletely understood. Here, we investigate the role of two E3 ligases, Dma1 and Dma2 (homologs of human RNF8), in the maintenance of genome stability in budding yeast. Using yeast spotting assays, chromatin immunoprecipitation and plasmid and chromosomal repair assays, we establish that Dma1 and Dma2 act in a redundant and a catalysis-dependent manner in the maintenance of genome stability, as well as localize to transcribed regions of the genome and increase in abundance upon phleomycin treatment. In addition, Dma1 and Dma2 are required for the normal kinetics of histone H4 acetylation under DNA damage conditions, genetically interact with RAD9 and SAE2, and are in a complex with Rad53 and histones. Taken together, our results demonstrate the requirement of Dma1 and Dma2 in regulating DNA repair pathway choice, preferentially affecting homologous recombination over nonhomologous end joining, and open up the possibility of using these candidates in manipulating the repair pathways toward precision genome editing.

摘要

DNA 双链断裂 (DSBs) 是内源性和外源性的有害损伤之一,通过非同源末端连接或同源重组进行修复。然而,负责维持基因组稳定性的分子机制仍不完全清楚。在这里,我们研究了两个 E3 连接酶 Dma1 和 Dma2(人类 RNF8 的同源物)在维持芽殖酵母基因组稳定性中的作用。通过酵母点斑实验、染色质免疫沉淀和质粒及染色体修复实验,我们确定 Dma1 和 Dma2 在维持基因组稳定性方面以冗余和催化依赖的方式发挥作用,定位在基因组转录区域,并在博莱霉素处理后丰度增加。此外,Dma1 和 Dma2 是正常组蛋白 H4 乙酰化动力学所必需的,在 DNA 损伤条件下与 RAD9 和 SAE2 遗传相互作用,并与 Rad53 和组蛋白形成复合物。总之,我们的结果表明 Dma1 和 Dma2 对调控 DNA 修复途径选择具有重要意义,优先影响同源重组而不是非同源末端连接,并为使用这些候选物来操纵修复途径以实现精确的基因组编辑开辟了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06b9/8165551/ba416c1796e5/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验