Suppr超能文献

“新冠病毒是一种生物武器”:在事实核查网站上对新冠病毒相关报道进行分类

"The coronavirus is a bioweapon": classifying coronavirus stories on fact-checking sites.

作者信息

Ng Lynnette Hui Xian, Carley Kathleen M

机构信息

CASOS, Institute for Software Research, Carnegie Mellon University, Pittsburgh, PA 15213 USA.

出版信息

Comput Math Organ Theory. 2021;27(2):179-194. doi: 10.1007/s10588-021-09329-w. Epub 2021 Apr 26.

Abstract

The 2020 coronavirus pandemic has heightened the need to flag coronavirus-related misinformation, and fact-checking groups have taken to verifying misinformation on the Internet. We explore stories reported by fact-checking groups PolitiFact, Poynter and Snopes from January to June 2020. We characterise these stories into six clusters, then analyse temporal trends of story validity and the level of agreement across sites. The sites present the same stories 78% of the time, with the highest agreement between Poynter and PolitiFact. We further break down the story clusters into more granular story types by proposing a unique automated method, which can be used to classify diverse story sources in both fact-checked stories and tweets. Our results show story type classification performs best when trained on the same medium, with contextualised BERT vector representations outperforming a Bag-Of-Words classifier.

摘要

2020年的冠状病毒大流行加剧了标记与冠状病毒相关错误信息的必要性,事实核查组织已着手在互联网上核实错误信息。我们探究了事实核查组织“政治事实”(PolitiFact)、波因特(Poynter)和“斯诺普斯”(Snopes)在2020年1月至6月期间报道的事件。我们将这些事件分为六个类别,然后分析事件真实性的时间趋势以及各网站之间的一致程度。这些网站78%的时间报道的是相同的事件,其中波因特和“政治事实”之间的一致性最高。我们通过提出一种独特的自动化方法,将事件类别进一步细分为更具体的事件类型,该方法可用于对经过事实核查的事件和推文的不同事件来源进行分类。我们的结果表明,当在相同媒介上进行训练时,事件类型分类的效果最佳,其中情境化的BERT向量表示法优于词袋分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db2b/8072300/d8a5e21f5ba2/10588_2021_9329_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验