Darwish Omar, Tashtoush Yahya, Bashayreh Amjad, Alomar Alaa, Alkhaza'leh Shahed, Darweesh Dirar
Information Security and Applied Computing, Eastern Michigan University, 900 Oakwood St, Ypsilanti, MI 48197 USA.
Department of Computer Science, Jordan University of Science and Technology, Irbid, 22110 Jordan.
Cluster Comput. 2023;26(3):1709-1735. doi: 10.1007/s10586-022-03706-z. Epub 2022 Aug 23.
Misleading health information is a critical phenomenon in our modern life due to advance in technology. In fact, social media facilitated the dissemination of information, and as a result, misinformation spread rapidly, cheaply, and successfully. Fake health information can have a significant effect on human behavior and attitudes. This survey presents the current works developed for misleading information detection (MLID) in health fields based on machine learning and deep learning techniques and introduces a detailed discussion of the main phases of the generic adopted approach for MLID. In addition, we highlight the benchmarking datasets and the most used metrics to evaluate the performance of MLID algorithms are discussed and finally, a deep investigation of the limitations and drawbacks of the current progressing technologies in various research directions is provided to help the researchers to use the most proper methods in this emerging task of MLID.
由于技术进步,误导性健康信息已成为现代生活中的一个关键现象。事实上,社交媒体促进了信息传播,结果错误信息得以迅速、低成本且成功地传播。虚假健康信息会对人类行为和态度产生重大影响。本次调查展示了基于机器学习和深度学习技术在健康领域为误导性信息检测(MLID)所开展的当前工作,并详细讨论了MLID通用采用方法的主要阶段。此外,我们重点介绍了基准数据集以及用于评估MLID算法性能的最常用指标,最后,对当前各种研究方向上正在发展的技术的局限性和缺点进行了深入调查,以帮助研究人员在这一新兴的MLID任务中使用最合适的方法。