Suppr超能文献

利用自然语言处理提高与烟草相关问题清单条目的实用性。

Improving the Utility of Tobacco-Related Problem List Entries Using Natural Language Processing.

机构信息

Institute for Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506.

Center for Clinical and Translational Sciences, University of Kentucky, Lexington, KY 40506.

出版信息

AMIA Annu Symp Proc. 2021 Jan 25;2020:534-543. eCollection 2020.

Abstract

We present findings on using natural language processing to classify tobacco-related entries from problem lists found within patient's electronic health records. Problem lists describe health-related issues recorded during a patient's medical visit; these problems are typically followed up upon during subsequent visits and are updated for relevance or accuracy. The mechanics of problem lists vary across different electronic health record systems. In general, they either manifest as pre-generated generic problems that may be selected from a master list or as text boxes where a healthcare professional may enter free text describing the problem. Using commonly-available natural language processing tools, we classified tobacco-related problems into three classes: active-user, former-user, and non-user; we further demonstrate that rule-based post-processing may significantly increase precision in identifying these classes (+32%, +22%, +35% respectively). We used these classes to generate tobacco time-spans that reconstruct a patient's tobacco-use history and better support secondary data analysis. We bundle this as an open-source toolkit with flow visualizations indicating how patient tobacco-related behavior changes longitudinally, which can also capture and visualize contradicting information such as smokers being flagged as having never smoked.

摘要

我们展示了使用自然语言处理来对电子健康记录中的患者问题列表中的烟草相关条目进行分类的结果。问题列表描述了患者就诊期间记录的与健康相关的问题;这些问题通常会在后续就诊时进行跟进,并根据相关性或准确性进行更新。不同的电子健康记录系统的问题列表机制不同。一般来说,它们要么表现为可以从主列表中选择的预生成通用问题,要么表现为可以输入描述问题的自由文本的文本框。我们使用常用的自然语言处理工具将烟草相关问题分为三类:活跃用户、前用户和非用户;我们进一步证明,基于规则的后处理可以显著提高识别这些类别的精度(分别提高 32%、22%、35%)。我们使用这些类别生成烟草时间跨度,以重建患者的烟草使用历史,并更好地支持二次数据分析。我们将其捆绑为一个带有流量可视化的开源工具包,指示患者的烟草相关行为如何随时间纵向变化,还可以捕获和可视化矛盾信息,例如标记吸烟者从未吸烟。

相似文献

本文引用的文献

2
Discovering associations between problem list and practice setting.发现问题清单与实践环境之间的关联。
BMC Med Inform Decis Mak. 2019 Apr 4;19(Suppl 3):69. doi: 10.1186/s12911-019-0779-y.
10
Literature review of SNOMED CT use.SNOMED CT 使用文献回顾。
J Am Med Inform Assoc. 2014 Feb;21(e1):e11-9. doi: 10.1136/amiajnl-2013-001636. Epub 2013 Jul 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验