Suppr超能文献

自然语言处理和推理规则作为更新电子健康记录中问题列表的策略。

Natural language processing and inference rules as strategies for updating problem list in an electronic health record.

作者信息

Plazzotta Fernando, Otero Carlos, Luna Daniel, de Quiros Fernan Gonzalez Bernaldo

机构信息

Health Informatics Department, Hospital Italiano de Buenos Aires, Argentina.

出版信息

Stud Health Technol Inform. 2013;192:1163.

Abstract

UNLABELLED

Physicians do not always keep the problem list accurate, complete and updated.

OBJECTIVE

To analyze natural language processing (NLP) techniques and inference rules as strategies to maintain completeness and accuracy of the problem list in EHRs.

METHODS

Non systematic literature review in PubMed, in the last 10 years. Strategies to maintain the EHRs problem list were analyzed in two ways: inputting and removing problems from the problem list.

RESULTS

NLP and inference rules have acceptable performance for inputting problems into the problem list. No studies using these techniques for removing problems were published Conclusion: Both tools, NLP and inference rules have had acceptable results as tools for maintain the completeness and accuracy of the problem list.

摘要

未标注

医生并不总是能使问题列表准确、完整且保持更新。

目的

分析自然语言处理(NLP)技术和推理规则,作为维护电子健康记录(EHR)中问题列表完整性和准确性的策略。

方法

对过去10年PubMed中的文献进行非系统性综述。通过两种方式分析维护EHR问题列表的策略:向问题列表中输入问题和从问题列表中移除问题。

结果

NLP和推理规则在将问题输入问题列表方面具有可接受的性能。尚未发表使用这些技术移除问题的研究。结论:NLP和推理规则这两种工具作为维护问题列表完整性和准确性的工具都取得了可接受的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验