Plazzotta Fernando, Otero Carlos, Luna Daniel, de Quiros Fernan Gonzalez Bernaldo
Health Informatics Department, Hospital Italiano de Buenos Aires, Argentina.
Stud Health Technol Inform. 2013;192:1163.
Physicians do not always keep the problem list accurate, complete and updated.
To analyze natural language processing (NLP) techniques and inference rules as strategies to maintain completeness and accuracy of the problem list in EHRs.
Non systematic literature review in PubMed, in the last 10 years. Strategies to maintain the EHRs problem list were analyzed in two ways: inputting and removing problems from the problem list.
NLP and inference rules have acceptable performance for inputting problems into the problem list. No studies using these techniques for removing problems were published Conclusion: Both tools, NLP and inference rules have had acceptable results as tools for maintain the completeness and accuracy of the problem list.
医生并不总是能使问题列表准确、完整且保持更新。
分析自然语言处理(NLP)技术和推理规则,作为维护电子健康记录(EHR)中问题列表完整性和准确性的策略。
对过去10年PubMed中的文献进行非系统性综述。通过两种方式分析维护EHR问题列表的策略:向问题列表中输入问题和从问题列表中移除问题。
NLP和推理规则在将问题输入问题列表方面具有可接受的性能。尚未发表使用这些技术移除问题的研究。结论:NLP和推理规则这两种工具作为维护问题列表完整性和准确性的工具都取得了可接受的结果。