Suppr超能文献

源自Zn-MOF-74的独立式氮掺杂多孔碳纤维膜:合成及其作为高性能钠离子电池阳极的应用

Free-Standing N-Doped Porous Carbon Fiber Membrane Derived From Zn-MOF-74: Synthesis and Application as Anode for Sodium-Ion Battery With an Excellent Performance.

作者信息

Xue Kaiwen, Si Yechen, Xie Shuya, Yang Jingxuan, Mo Yan, Long Baojun, Wei Wen, Cao Peiyu, Wei Huixian, Guan Hongyu, Michaelis Elizabeth G, Guo George, Yue Yanfeng, Shan Changsheng

机构信息

Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China.

Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China.

出版信息

Front Chem. 2021 Apr 16;9:647545. doi: 10.3389/fchem.2021.647545. eCollection 2021.

Abstract

It is important to develop new energy storage and conversion technology to mitigate the energy crisis for the sustainable development of human society. In this study, free-standing porous nitrogen-doped carbon fiber (PN-CF) membranes were obtained from the pyrolysis of Zn-MOF-74/polyacrylonitrile (PAN) composite fibers, which were fabricated by an electrospinning technology. The resulting free-standing fibers can be cut into membrane disks and directly used as an anode electrode without the addition of any binder or additive. The PN-CFs showed great reversible capacities of 210 mAh g at a current density of 0.05 A g and excellent cyclic stability of 170.5 mAh g at a current density of 0.2 A g after 600 cycles in sodium ion batteries (SIBs). The improved electrochemical performance of PN-CFs can be attributed to the rich porous structure derived by the incorporation of Zn-MOF-74 and nitrogen doping to promote sodium ion transportation.

摘要

开发新型储能和转换技术对于缓解能源危机以实现人类社会的可持续发展至关重要。在本研究中,通过静电纺丝技术制备的Zn-MOF-74/聚丙烯腈(PAN)复合纤维热解得到了自支撑多孔氮掺杂碳纤维(PN-CF)膜。所得的自支撑纤维可切割成膜片,无需添加任何粘结剂或添加剂即可直接用作阳极电极。在钠离子电池(SIBs)中,PN-CFs在0.05 A g的电流密度下表现出210 mAh g的高可逆容量,在0.2 A g的电流密度下经过600次循环后表现出170.5 mAh g的优异循环稳定性。PN-CFs电化学性能的改善可归因于通过引入Zn-MOF-74和氮掺杂形成的丰富多孔结构,从而促进了钠离子传输。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b7/8086192/2f6f6118b825/fchem-09-647545-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验