Suppr超能文献

用于钠离子电池的双金属硫化物负极的最新进展

Recent Advances of Bimetallic Sulfide Anodes for Sodium Ion Batteries.

作者信息

Huang Yu, Xiong Dongbin, Li Xifei, Maleki Kheimeh Sari Hirbod, Peng Jianhong, Li Yingying, Li Yunyan, Li Dejun, Sun Qian, Sun Xueliang

机构信息

Tianjin International Joint Research Center of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin, China.

Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, China.

出版信息

Front Chem. 2020 May 6;8:353. doi: 10.3389/fchem.2020.00353. eCollection 2020.

Abstract

The high usage for new energy has been promoting the next-generation energy storage systems (ESS). As promising alternatives to lithium ion batteries (LIBs), sodium ion batteries (SIBs) have caused extensive research interest owing to the high natural Na abundance of 2.4 wt.% (vs. 0.0017 wt.% for Li) in the earth's crust and the low cost of it. The development of high-performance electrode materials has been challenging due to the increase in the feasibility of SIBs technology. In the past years, bimetallic sulfides (BMSs) with high theoretical capacity and outstanding redox reversibility have shown great promise as high performance anode materials for SIBs. Herein, the recent advancements of BMSs as anode for SIBs are reported, and the electrochemical mechanism of these electrodes are systematically investigated. In addition, the current issues, challenges, and perspectives are highlighted to address the extensive understanding of the associated electrochemical process, aiming to provide an insightful outlook for possible directions of anode materials for SIBs.

摘要

对新能源的高需求一直在推动下一代储能系统(ESS)的发展。作为锂离子电池(LIBs)的有前景的替代方案,钠离子电池(SIBs)因其在地壳中2.4 wt.%的高天然钠丰度(相比之下锂为0.0017 wt.%)及其低成本而引起了广泛的研究兴趣。由于SIBs技术可行性的提高,高性能电极材料的开发一直具有挑战性。在过去几年中,具有高理论容量和出色氧化还原可逆性的双金属硫化物(BMSs)作为SIBs的高性能负极材料显示出巨大的潜力。在此,报道了BMSs作为SIBs负极的最新进展,并系统地研究了这些电极的电化学机理。此外,强调了当前的问题、挑战和前景,以深入了解相关的电化学过程,旨在为SIBs负极材料的可能发展方向提供有见地的展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6de7/7218125/179b68a7aaff/fchem-08-00353-g0001.jpg

相似文献

1
Recent Advances of Bimetallic Sulfide Anodes for Sodium Ion Batteries.
Front Chem. 2020 May 6;8:353. doi: 10.3389/fchem.2020.00353. eCollection 2020.
2
Advanced Anode Materials for Rechargeable Sodium-Ion Batteries.
ACS Nano. 2023 Jun 27;17(12):11220-11252. doi: 10.1021/acsnano.3c02892. Epub 2023 Jun 8.
3
High-Performance Sodium-Ion Batteries with Graphene: An Overview of Recent Developments and Design.
ChemSusChem. 2025 Jan 14;18(2):e202400958. doi: 10.1002/cssc.202400958. Epub 2024 Oct 16.
4
Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries.
Adv Mater. 2017 Dec;29(48). doi: 10.1002/adma.201700622. Epub 2017 Jun 28.
5
Evaluation of Metal Phosphide Nanocrystals as Anode Materials for Na-ion Batteries.
Chimia (Aarau). 2015;69(12):724-728. doi: 10.2533/chimia.2015.724.
6
Self-Assembled Framework Formed During Lithiation of SnS Nanoplates Revealed by in Situ Electron Microscopy.
Acc Chem Res. 2017 Jul 18;50(7):1513-1520. doi: 10.1021/acs.accounts.7b00086. Epub 2017 Jul 6.
7
Recent Advances in Carbon Anodes for Sodium-Ion Batteries.
Chem Rec. 2022 Oct;22(10):e202200083. doi: 10.1002/tcr.202200083. Epub 2022 Jun 7.
8
Progress and Prospect of Bimetallic Oxides for Sodium-Ion Batteries: Synthesis, Mechanism, and Optimization Strategy.
ACS Nano. 2024 Mar 19;18(11):7796-7824. doi: 10.1021/acsnano.4c00613. Epub 2024 Mar 8.
10
A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk-Shell Structured Nanomaterials.
Nanomicro Lett. 2018;10(3):40. doi: 10.1007/s40820-018-0194-4. Epub 2018 Feb 28.

本文引用的文献

3
Recent Advances in Layered Ti C T MXene for Electrochemical Energy Storage.
Small. 2018 Apr;14(17):e1703419. doi: 10.1002/smll.201703419. Epub 2018 Feb 5.
4
Scalable synthesis of SnS/S-doped graphene composites for superior Li/Na-ion batteries.
Nanoscale. 2017 Oct 12;9(39):14820-14825. doi: 10.1039/c7nr06044k.
5
Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries.
Adv Mater. 2017 Dec;29(48). doi: 10.1002/adma.201700431. Epub 2017 Jun 19.
6
CuVS: A High Rate Capacity and Stable Anode Material for Sodium Ion Batteries.
ACS Appl Mater Interfaces. 2017 Jun 28;9(25):21283-21291. doi: 10.1021/acsami.7b04739. Epub 2017 Jun 16.
9
Sodium-ion batteries: present and future.
Chem Soc Rev. 2017 Jun 19;46(12):3529-3614. doi: 10.1039/c6cs00776g.
10
Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage.
Nanoscale. 2017 Feb 2;9(5):1972-1977. doi: 10.1039/c6nr08296c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验