Suppr超能文献

免疫浸润特征及机器学习模型在骨相关恶性肿瘤鉴别诊断及预后中的应用

Application of Immune Infiltration Signature and Machine Learning Model in the Differential Diagnosis and Prognosis of Bone-Related Malignancies.

作者信息

Li Guo-Qi, Wang Yi-Kai, Zhou Hao, Jin Lin-Guang, Wang Chun-Yu, Albahde Mugahed, Wu Yan, Li Heng-Yuan, Zhang Wen-Kan, Li Bing-Hao, Ye Zhao-Ming

机构信息

Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

Orthopedics Research Institute of Zhejiang University, Hangzhou, China.

出版信息

Front Cell Dev Biol. 2021 Apr 15;9:630355. doi: 10.3389/fcell.2021.630355. eCollection 2021.

Abstract

Bone-related malignancies, such as osteosarcoma, Ewing's sarcoma, multiple myeloma, and cancer bone metastases have similar histological context, but they are distinct in origin and biological behavior. We hypothesize that a distinct immune infiltrative microenvironment exists in these four most common malignant bone-associated tumors and can be used for tumor diagnosis and patient prognosis. After sample cleaning, data integration, and batch effect removal, we used 22 publicly available datasets to draw out the tumor immune microenvironment using the ssGSEA algorithm. The diagnostic model was developed using the random forest. Further statistical analysis of the immune microenvironment and clinical data of patients with osteosarcoma and Ewing's sarcoma was carried out. The results suggested significant differences in the microenvironment of bone-related tumors, and the diagnostic accuracy of the model was higher than 97%. Also, high infiltration of multiple immune cells in Ewing's sarcoma was suggestive of poor patient prognosis. Meanwhile, increased infiltration of macrophages and B cells suggested a better prognosis for patients with osteosarcoma, and effector memory CD8 T cells and type 2 T helper cells correlated with patients' chemotherapy responsiveness and tumor metastasis. Our study revealed that the random forest diagnostic model based on immune infiltration can accurately perform the differential diagnosis of bone-related malignancies. The immune microenvironment of osteosarcoma and Ewing's sarcoma has an important impact on patient prognosis. Suppressing the highly inflammatory environment of Ewing's sarcoma and promoting macrophage and B cell infiltration may have good potential to be a novel adjuvant treatment option for osteosarcoma and Ewing's sarcoma.

摘要

骨肉瘤、尤因肉瘤、多发性骨髓瘤和癌症骨转移等骨相关恶性肿瘤具有相似的组织学背景,但它们在起源和生物学行为上有所不同。我们假设在这四种最常见的骨相关恶性肿瘤中存在独特的免疫浸润微环境,可用于肿瘤诊断和患者预后评估。在进行样本清理、数据整合和批次效应消除后,我们使用22个公开可用的数据集,通过单样本基因集富集分析(ssGSEA)算法描绘肿瘤免疫微环境。使用随机森林构建诊断模型。对骨肉瘤和尤因肉瘤患者的免疫微环境和临床数据进行了进一步的统计分析。结果表明骨相关肿瘤的微环境存在显著差异,该模型的诊断准确率高于97%。此外,尤因肉瘤中多种免疫细胞的高浸润提示患者预后不良。同时,巨噬细胞和B细胞浸润增加提示骨肉瘤患者预后较好,效应记忆CD8 T细胞和2型辅助性T细胞与患者的化疗反应性和肿瘤转移相关。我们的研究表明,基于免疫浸润的随机森林诊断模型能够准确地对骨相关恶性肿瘤进行鉴别诊断。骨肉瘤和尤因肉瘤的免疫微环境对患者预后有重要影响。抑制尤因肉瘤的高炎症环境并促进巨噬细胞和B细胞浸润可能具有成为骨肉瘤和尤因肉瘤新型辅助治疗方案的良好潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41fc/8082117/ca1f31d8d6a8/fcell-09-630355-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验