Suppr超能文献

一种与骨肉瘤程序性细胞死亡相关的新型预后标志物。

A novel prognostic signature related to programmed cell death in osteosarcoma.

作者信息

Jiang Yu-Chen, Xu Qi-Tong, Wang Hong-Bin, Ren Si-Yuan, Zhang Yao

机构信息

Affiliated Zhongshan Hospital Of Dalian University, Dalian, China.

Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.

出版信息

Front Immunol. 2024 Jul 1;15:1427661. doi: 10.3389/fimmu.2024.1427661. eCollection 2024.

Abstract

BACKGROUND

Osteosarcoma primarily affects children and adolescents, with current clinical treatments often resulting in poor prognosis. There has been growing evidence linking programmed cell death (PCD) to the occurrence and progression of tumors. This study aims to enhance the accuracy of OS prognosis assessment by identifying PCD-related prognostic risk genes, constructing a PCD-based OS prognostic risk model, and characterizing the function of genes within this model.

METHOD

We retrieved osteosarcoma patient samples from TARGET and GEO databases, and manually curated literature to summarize 15 forms of programmed cell death. We collated 1621 PCD genes from literature sources as well as databases such as KEGG and GSEA. To construct our model, we integrated ten machine learning methods including Enet, Ridge, RSF, CoxBoost, plsRcox, survivalSVM, Lasso, SuperPC, StepCox, and GBM. The optimal model was chosen based on the average C-index, and named Osteosarcoma Programmed Cell Death Score (OS-PCDS). To validate the predictive performance of our model across different datasets, we employed three independent GEO validation sets. Moreover, we assessed mRNA and protein expression levels of the genes included in our model, and investigated their impact on proliferation, migration, and apoptosis of osteosarcoma cells by gene knockdown experiments.

RESULT

In our extensive analysis, we identified 30 prognostic risk genes associated with programmed cell death (PCD) in osteosarcoma (OS). To assess the predictive power of these genes, we computed the C-index for various combinations. The model that employed the random survival forest (RSF) algorithm demonstrated superior predictive performance, significantly outperforming traditional approaches. This optimal model included five key genes: MTM1, MLH1, CLTCL1, EDIL3, and SQLE. To validate the relevance of these genes, we analyzed their mRNA and protein expression levels, revealing significant disparities between osteosarcoma cells and normal tissue cells. Specifically, the expression levels of these genes were markedly altered in OS cells, suggesting their critical role in tumor progression. Further functional validation was performed through gene knockdown experiments in U2OS cells. Knockdown of three of these genes-CLTCL1, EDIL3, and SQLE-resulted in substantial changes in proliferation rate, migration capacity, and apoptosis rate of osteosarcoma cells. These findings underscore the pivotal roles of these genes in the pathophysiology of osteosarcoma and highlight their potential as therapeutic targets.

CONCLUSION

The five genes constituting the OS-PCDS model-CLTCL1, MTM1, MLH1, EDIL3, and SQLE-were found to significantly impact the proliferation, migration, and apoptosis of osteosarcoma cells, highlighting their potential as key prognostic markers and therapeutic targets. OS-PCDS enables accurate evaluation of the prognosis in patients with osteosarcoma.

摘要

背景

骨肉瘤主要影响儿童和青少年,目前的临床治疗往往导致预后不良。越来越多的证据表明程序性细胞死亡(PCD)与肿瘤的发生和发展有关。本研究旨在通过识别PCD相关的预后风险基因、构建基于PCD的骨肉瘤预后风险模型以及表征该模型内基因的功能,提高骨肉瘤预后评估的准确性。

方法

我们从TARGET和GEO数据库中检索骨肉瘤患者样本,并人工整理文献以总结15种程序性细胞死亡形式。我们从文献来源以及KEGG和GSEA等数据库中整理了1621个PCD基因。为构建我们的模型,我们整合了十种机器学习方法,包括Enet、Ridge、RSF、CoxBoost、plsRcox、survivalSVM、Lasso、SuperPC、StepCox和GBM。根据平均C指数选择最佳模型,并将其命名为骨肉瘤程序性细胞死亡评分(OS-PCDS)。为了验证我们模型在不同数据集上的预测性能,我们使用了三个独立的GEO验证集。此外,我们评估了模型中包含基因的mRNA和蛋白质表达水平,并通过基因敲低实验研究了它们对骨肉瘤细胞增殖、迁移和凋亡的影响。

结果

在我们的广泛分析中,我们确定了30个与骨肉瘤(OS)中程序性细胞死亡(PCD)相关的预后风险基因。为了评估这些基因的预测能力,我们计算了各种组合的C指数。采用随机生存森林(RSF)算法的模型表现出卓越的预测性能,显著优于传统方法。这个最佳模型包括五个关键基因:MTM1、MLH1、CLTCL1、EDIL3和SQLE。为了验证这些基因的相关性,我们分析了它们的mRNA和蛋白质表达水平,发现骨肉瘤细胞与正常组织细胞之间存在显著差异。具体而言,这些基因的表达水平在OS细胞中明显改变,表明它们在肿瘤进展中起关键作用。通过在U2OS细胞中进行基因敲低实验进行了进一步的功能验证。敲低其中三个基因——CLTCL1、EDIL3和SQLE——导致骨肉瘤细胞的增殖率、迁移能力和凋亡率发生显著变化。这些发现强调了这些基因在骨肉瘤病理生理学中的关键作用,并突出了它们作为治疗靶点的潜力。

结论

构成OS-PCDS模型的五个基因——CLTCL1、MTM1、MLH1、EDIL3和SQLE——被发现对骨肉瘤细胞的增殖、迁移和凋亡有显著影响,突出了它们作为关键预后标志物和治疗靶点的潜力。OS-PCDS能够准确评估骨肉瘤患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7de/11250594/a08bb64f32d7/fimmu-15-1427661-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验