Suppr超能文献

观点:在新冠疫情时代,用于远程跟踪症状、预测健康异常、实施预防措施以及控制病毒传播的可穿戴医疗物联网

Perspective: Wearable Internet of Medical Things for Remote Tracking of Symptoms, Prediction of Health Anomalies, Implementation of Preventative Measures, and Control of Virus Spread During the Era of COVID-19.

作者信息

Mehrdad Sarmad, Wang Yao, Atashzar S Farokh

机构信息

Department of Electrical and Computer Engineering, New York University, New York, NY, United States.

Department of Biomedical Engineering, New York University, New York, NY, United States.

出版信息

Front Robot AI. 2021 Apr 14;8:610653. doi: 10.3389/frobt.2021.610653. eCollection 2021.

Abstract

The COVID-19 pandemic has highly impacted the communities globally by reprioritizing the means through which various societal sectors operate. Among these sectors, healthcare providers and medical workers have been impacted prominently due to the massive increase in demand for medical services under unprecedented circumstances. Hence, any tool that can help the compliance with social guidelines for COVID-19 spread prevention will have a positive impact on managing and controlling the virus outbreak and reducing the excessive burden on the healthcare system. This perspective article disseminates the perspectives of the authors regarding the use of novel biosensors and intelligent algorithms embodied in wearable IoMT frameworks for tackling this issue. We discuss how with the use of smart IoMT wearables certain biomarkers can be tracked for detection of COVID-19 in exposed individuals. We enumerate several machine learning algorithms which can be used to process a wide range of collected biomarkers for detecting (a) multiple symptoms of SARS-CoV-2 infection and (b) the dynamical likelihood of contracting the virus through interpersonal interaction. Eventually, we enunciate how a systematic use of smart wearable IoMT devices in various social sectors can intelligently help controlling the spread of COVID-19 in communities as they enter the reopening phase. We explain how this framework can benefit individuals and their medical correspondents by introducing Systems for Symptom Decoding (SSD), and how the use of this technology can be generalized on a societal level for the control of spread by introducing Systems for Spread Tracing (SST).

摘要

新冠疫情通过重新确定各社会部门的运作方式,对全球社区产生了重大影响。在这些部门中,医疗服务提供者和医护人员受到的影响尤为显著,因为在前所未有的情况下,医疗服务需求大幅增加。因此,任何有助于遵守新冠病毒传播预防社会准则的工具,都将对管理和控制病毒爆发以及减轻医疗系统的过重负担产生积极影响。这篇观点文章阐述了作者对于在可穿戴物联网医疗框架中使用新型生物传感器和智能算法来解决这一问题的看法。我们讨论了如何通过使用智能物联网医疗可穿戴设备来追踪某些生物标志物,以检测接触者是否感染新冠病毒。我们列举了几种机器学习算法,这些算法可用于处理广泛收集的生物标志物,以检测(a)新冠病毒感染的多种症状,以及(b)通过人际互动感染病毒的动态可能性。最终,我们阐明了在各个社会部门系统地使用智能可穿戴物联网医疗设备如何能够在社区进入重新开放阶段时,智能地帮助控制新冠病毒的传播。我们解释了这个框架如何通过引入症状解码系统(SSD)使个人及其医疗通信者受益,以及通过引入传播追踪系统(SST),如何在社会层面推广使用这项技术来控制传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb2/8079807/1ce504c296a9/frobt-08-610653-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验