Suppr超能文献

青少年术后阿片类药物使用时间延长的预测:来自机器学习的见解。

Prediction of Prolonged Opioid Use After Surgery in Adolescents: Insights From Machine Learning.

机构信息

From the Department of Electrical Engineering, Stanford University, Stanford, California.

Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California.

出版信息

Anesth Analg. 2021 Aug 1;133(2):304-313. doi: 10.1213/ANE.0000000000005527.

Abstract

BACKGROUND

Long-term opioid use has negative health care consequences. Patients who undergo surgery are at risk for prolonged opioid use after surgery (POUS). While risk factors have been previously identified, no methods currently exist to determine higher-risk patients. We assessed the ability of a variety of machine-learning algorithms to predict adolescents at risk of POUS and to identify factors associated with this risk.

METHODS

A retrospective cohort study was conducted using a national insurance claims database of adolescents aged 12-21 years who underwent 1 of 1297 surgeries, with general anesthesia, from January 1, 2011 to December 30, 2017. Logistic regression with an L2 penalty and with a logistic regression with an L1 lasso (Lasso) penalty, random forests, gradient boosting machines, and extreme gradient boosted models were trained using patient and provider characteristics to predict POUS (≥1 opioid prescription fill within 90-180 days after surgery) risk. Predictive capabilities were assessed using the area under the receiver-operating characteristic curve (AUC)/C-statistic, mean average precision (MAP); individual decision thresholds were compared using sensitivity, specificity, Youden Index, F1 score, and number needed to evaluate. The variables most strongly associated with POUS risk were identified using permutation importance.

RESULTS

Of 186,493 eligible patient surgical visits, 8410 (4.51%) had POUS. The top-performing algorithm achieved an overall AUC of 0.711 (95% confidence interval [CI], 0.699-0.723) and significantly higher AUCs for certain surgeries (eg, 0.823 for spinal fusion surgery and 0.812 for dental surgery). The variables with the strongest association with POUS were the days' supply of opioids and oral morphine milligram equivalents of opioids in the year before surgery.

CONCLUSIONS

Machine-learning models to predict POUS risk among adolescents show modest to strong results for different surgeries and reveal variables associated with higher risk. These results may inform health care system-specific identification of patients at higher risk for POUS and drive development of preventative measures.

摘要

背景

长期使用阿片类药物会对医疗保健产生负面影响。接受手术的患者在手术后(POUS)有长期使用阿片类药物的风险。虽然之前已经确定了风险因素,但目前还没有方法来确定高风险患者。我们评估了各种机器学习算法预测青少年 POUS 风险的能力,并确定了与这种风险相关的因素。

方法

这是一项使用全国保险索赔数据库进行的回顾性队列研究,纳入了 2011 年 1 月 1 日至 2017 年 12 月 30 日期间接受全麻下 1297 种手术之一的 12-21 岁青少年患者。使用逻辑回归(L2 惩罚)和逻辑回归(L1 套索(Lasso)惩罚)、随机森林、梯度提升机和极端梯度提升模型,基于患者和提供者特征训练来预测 POUS(术后 90-180 天内≥1 次阿片类药物处方)风险。使用接受者操作特征曲线(AUC)/C 统计量、平均精度(MAP)评估预测能力;通过敏感性、特异性、约登指数、F1 评分和需要评估的数量比较个体决策阈值。使用置换重要性识别与 POUS 风险最密切相关的变量。

结果

在 186493 例符合条件的患者手术就诊中,8410 例(4.51%)发生 POUS。表现最好的算法总体 AUC 为 0.711(95%置信区间 [CI],0.699-0.723),某些手术的 AUC 显著更高(例如,脊柱融合术为 0.823,牙科手术为 0.812)。与 POUS 关系最密切的变量是术前一年阿片类药物的供应天数和口服吗啡毫克当量。

结论

用于预测青少年 POUS 风险的机器学习模型在不同手术中显示出中等至较高的效果,并揭示了与更高风险相关的变量。这些结果可能为医疗保健系统识别更高风险的患者提供信息,并推动预防性措施的制定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验