Suppr超能文献

迈向全球模型通用性:使用 OHDSI 网络进行患者水平风险预测模型的独立跨站点特征评估。

Towards global model generalizability: independent cross-site feature evaluation for patient-level risk prediction models using the OHDSI network.

机构信息

Department of Medicine, Stanford University, Stanford, CA 94305, United States.

Department of Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States.

出版信息

J Am Med Inform Assoc. 2024 Apr 19;31(5):1051-1061. doi: 10.1093/jamia/ocae028.

Abstract

BACKGROUND

Predictive models show promise in healthcare, but their successful deployment is challenging due to limited generalizability. Current external validation often focuses on model performance with restricted feature use from the original training data, lacking insights into their suitability at external sites. Our study introduces an innovative methodology for evaluating features during both the development phase and the validation, focusing on creating and validating predictive models for post-surgery patient outcomes with improved generalizability.

METHODS

Electronic health records (EHRs) from 4 countries (United States, United Kingdom, Finland, and Korea) were mapped to the OMOP Common Data Model (CDM), 2008-2019. Machine learning (ML) models were developed to predict post-surgery prolonged opioid use (POU) risks using data collected 6 months before surgery. Both local and cross-site feature selection methods were applied in the development and external validation datasets. Models were developed using Observational Health Data Sciences and Informatics (OHDSI) tools and validated on separate patient cohorts.

RESULTS

Model development included 41 929 patients, 14.6% with POU. The external validation included 31 932 (UK), 23 100 (US), 7295 (Korea), and 3934 (Finland) patients with POU of 44.2%, 22.0%, 15.8%, and 21.8%, respectively. The top-performing model, Lasso logistic regression, achieved an area under the receiver operating characteristic curve (AUROC) of 0.75 during local validation and 0.69 (SD = 0.02) (averaged) in external validation. Models trained with cross-site feature selection significantly outperformed those using only features from the development site through external validation (P < .05).

CONCLUSIONS

Using EHRs across four countries mapped to the OMOP CDM, we developed generalizable predictive models for POU. Our approach demonstrates the significant impact of cross-site feature selection in improving model performance, underscoring the importance of incorporating diverse feature sets from various clinical settings to enhance the generalizability and utility of predictive healthcare models.

摘要

背景

预测模型在医疗保健领域具有广阔的应用前景,但由于其通用性有限,成功部署仍具有挑战性。目前的外部验证通常侧重于模型性能,仅使用原始训练数据中的受限特征,缺乏对其在外部站点适用性的深入了解。本研究引入了一种创新的方法,用于在开发阶段和验证阶段评估特征,重点是创建和验证具有更好通用性的术后患者结局预测模型。

方法

将来自 4 个国家(美国、英国、芬兰和韩国)的电子健康记录(EHR)映射到 OMOP 通用数据模型(CDM),时间范围为 2008 年至 2019 年。使用手术前 6 个月收集的数据,采用机器学习(ML)模型预测术后长期阿片类药物使用(POU)风险。在开发和外部验证数据集上应用了本地和跨站点特征选择方法。使用观察性健康数据科学与信息学(OHDSI)工具开发模型,并在单独的患者队列上进行验证。

结果

模型开发包括 41929 名患者,其中 14.6%存在 POU。外部验证包括 31932 名(英国)、23100 名(美国)、7295 名(韩国)和 3934 名(芬兰)POU 患者,POU 发生率分别为 44.2%、22.0%、15.8%和 21.8%。表现最佳的模型为 Lasso 逻辑回归模型,其在本地验证中的 AUC 为 0.75,在外部验证中(平均值)为 0.69(SD=0.02)。通过外部验证,使用跨站点特征选择训练的模型明显优于仅使用开发站点特征的模型(P<0.05)。

结论

使用映射到 OMOP CDM 的来自 4 个国家的 EHR,我们开发了具有通用性的 POU 预测模型。我们的方法证明了跨站点特征选择在提高模型性能方面的重要作用,强调了从各种临床环境中纳入多样化特征集的重要性,以增强预测性医疗保健模型的通用性和实用性。

相似文献

4
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.
9
Observational Health Data Science and Informatics and Hand Surgery Research: Past, Present, and Future.
J Hand Surg Am. 2025 Mar;50(3):363-367. doi: 10.1016/j.jhsa.2024.09.009. Epub 2024 Oct 18.

引用本文的文献

1
Applications and challenges of biomarker-based predictive models in proactive health management.
Front Public Health. 2025 Aug 18;13:1633487. doi: 10.3389/fpubh.2025.1633487. eCollection 2025.
2
Moving forward on the science of informatics and predictive analytics.
J Am Med Inform Assoc. 2024 Apr 19;31(5):1049-1050. doi: 10.1093/jamia/ocae077.

本文引用的文献

1
Improving machine learning with ensemble learning on observational healthcare data.
AMIA Annu Symp Proc. 2024 Jan 11;2023:521-529. eCollection 2023.
2
Generalizability of an acute kidney injury prediction model across health systems.
Nat Mach Intell. 2022 Dec;4(12):1121-1129. doi: 10.1038/s42256-022-00563-8. Epub 2022 Dec 1.
3
Postoperative opioid prescribing patients with diabetes: Opportunities for personalized pain management.
PLoS One. 2023 Aug 24;18(8):e0287697. doi: 10.1371/journal.pone.0287697. eCollection 2023.
4
Challenges of implementing computer-aided diagnostic models for neuroimages in a clinical setting.
NPJ Digit Med. 2023 Jul 13;6(1):129. doi: 10.1038/s41746-023-00868-x.
5
Electronic health record data quality variability across a multistate clinical research network.
J Clin Transl Sci. 2023 May 15;7(1):e130. doi: 10.1017/cts.2023.548. eCollection 2023.
6
Perspectives on validation of clinical predictive algorithms.
NPJ Digit Med. 2023 May 6;6(1):86. doi: 10.1038/s41746-023-00832-9.
7
Generalizability of Machine Learning Models: Quantitative Evaluation of Three Methodological Pitfalls.
Radiol Artif Intell. 2022 Nov 16;5(1):e220028. doi: 10.1148/ryai.220028. eCollection 2023 Jan.
8
Machine Learning and Real-World Data to Predict Lung Cancer Risk in Routine Care.
Cancer Epidemiol Biomarkers Prev. 2023 Mar 6;32(3):337-343. doi: 10.1158/1055-9965.EPI-22-0873.
9
External validation of existing dementia prediction models on observational health data.
BMC Med Res Methodol. 2022 Dec 5;22(1):311. doi: 10.1186/s12874-022-01793-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验