Suppr超能文献

采样策略评估时间事件终点新生物标志物的预后价值。

Sampling strategies to evaluate the prognostic value of a new biomarker on a time-to-event end-point.

机构信息

BICOCCA BIOINFORMATICS BIOSTATISTICS AND BIOIMAGING CENTRE-B4, School of Medicine and Surgery, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, Italy.

出版信息

BMC Med Res Methodol. 2021 Apr 30;21(1):93. doi: 10.1186/s12874-021-01283-0.

Abstract

BACKGROUND

The availability of large epidemiological or clinical data storing biological samples allow to study the prognostic value of novel biomarkers, but efficient designs are needed to select a subsample on which to measure them, for parsimony and economical reasons. Two-phase stratified sampling is a flexible approach to perform such sub-sampling, but literature on stratification variables to be used in the sampling and power evaluation is lacking especially for survival data.

METHODS

We compared the performance of different sampling designs to assess the prognostic value of a new biomarker on a time-to-event endpoint, applying a Cox model weighted by the inverse of the empirical inclusion probability.

RESULTS

Our simulation results suggest that case-control stratified (or post stratified) by a surrogate variable of the marker can yield higher performances than simple random, probability proportional to size, and case-control sampling. In the presence of high censoring rate, results showed an advantage of nested case-control and counter-matching designs in term of design effect, although the use of a fixed ratio between cases and controls might be disadvantageous. On real data on childhood acute lymphoblastic leukemia, we found that optimal sampling using pilot data is greatly efficient.

CONCLUSIONS

Our study suggests that, in our sample, case-control stratified by surrogate and nested case-control yield estimates and power comparable to estimates obtained in the full cohort while strongly decreasing the number of patients required. We recommend to plan the sample size and using sampling designs for exploration of novel biomarker in clinical cohort data.

摘要

背景

大量的流行病学或临床数据存储生物样本,使得研究新型生物标志物的预后价值成为可能,但为了节约和经济原因,需要设计有效的方案来选择一个子样本进行测量。两阶段分层抽样是一种灵活的方法来进行这种子抽样,但在用于抽样和功效评估的分层变量方面的文献很少,特别是对于生存数据。

方法

我们比较了不同抽样设计的性能,以评估一种新的生物标志物在时间事件终点的预后价值,应用 Cox 模型加权经验纳入概率的倒数。

结果

我们的模拟结果表明,病例对照分层(或事后分层),通过标志物的替代变量,可以比简单随机、与大小成比例的概率和病例对照抽样产生更高的性能。在高censoring 率的情况下,结果表明嵌套病例对照和反匹配设计在设计效果方面具有优势,尽管使用病例和对照之间的固定比例可能不利。在儿童急性淋巴细胞白血病的真实数据上,我们发现使用试点数据进行最优抽样是非常有效的。

结论

我们的研究表明,在我们的样本中,通过替代和嵌套病例对照分层的病例对照,估计值和功效与在整个队列中获得的估计值相当,同时大大减少了所需的患者数量。我们建议在临床队列数据中,为探索新型生物标志物计划样本量和使用抽样设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd31/8091513/65e3e1073c76/12874_2021_1283_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验