Suppr超能文献

病例-队列和巢式病例对照设计的风险预测指标:在心血管疾病中的应用。

Risk prediction measures for case-cohort and nested case-control designs: an application to cardiovascular disease.

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

出版信息

Am J Epidemiol. 2012 Apr 1;175(7):715-24. doi: 10.1093/aje/kwr374. Epub 2012 Mar 6.

Abstract

Case-cohort and nested case-control designs are often used to select an appropriate subsample of individuals from prospective cohort studies. Despite the great attention that has been given to the calculation of association estimators, no formal methods have been described for estimating risk prediction measures from these 2 sampling designs. Using real data from the Swedish Twin Registry (2004-2009), the authors sampled unstratified and stratified (matched) case-cohort and nested case-control subsamples and compared them with the full cohort (as "gold standard"). The real biomarker (high density lipoprotein cholesterol) and simulated biomarkers (BIO1 and BIO2) were studied in terms of association with cardiovascular disease, individual risk of cardiovascular disease at 3 years, and main prediction metrics. Overall, stratification improved efficiency, with stratified case-cohort designs being comparable to matched nested case-control designs. Individual risks and prediction measures calculated by using case-cohort and nested case-control designs after appropriate reweighting could be assessed with good efficiency, except for the finely matched nested case-control design, where matching variables could not be included in the individual risk estimation. In conclusion, the authors have shown that case-cohort and nested case-control designs can be used in settings where the research aim is to evaluate the prediction ability of new markers and that matching strategies for nested case-control designs may lead to biased prediction measures.

摘要

病例-队列和巢式病例对照设计通常用于从前瞻性队列研究中选择适当的个体亚组。尽管人们非常关注关联估计量的计算,但尚未为这两种抽样设计从风险预测指标的估计描述任何正式方法。作者使用来自瑞典双胞胎登记处(2004-2009 年)的真实数据,对非分层和分层(匹配)病例-队列和巢式病例对照亚组进行抽样,并将其与全队列(作为“金标准”)进行比较。根据心血管疾病的关联性、3 年内个体心血管疾病的风险以及主要预测指标,对真实生物标志物(高密度脂蛋白胆固醇)和模拟生物标志物(BIO1 和 BIO2)进行了研究。总体而言,分层提高了效率,分层病例-队列设计与匹配的巢式病例对照设计相当。通过适当的重新加权,可以使用病例-队列和巢式病例对照设计计算个体风险和预测指标,效率良好,除了精细匹配的巢式病例对照设计,在这种设计中,无法将匹配变量纳入个体风险估计。总之,作者表明,病例-队列和巢式病例对照设计可用于评估新标志物预测能力的研究目的,并且巢式病例对照设计的匹配策略可能导致有偏的预测指标。

相似文献

2
Estimating improvement in prediction with matched case-control designs.使用匹配病例对照设计评估预测改善情况。
Lifetime Data Anal. 2013 Apr;19(2):170-201. doi: 10.1007/s10985-012-9237-1. Epub 2013 Jan 29.

引用本文的文献

1
Nested case-control sampling without replacement.巢式病例对照研究(无置换)。
Lifetime Data Anal. 2024 Oct;30(4):776-799. doi: 10.1007/s10985-024-09633-y. Epub 2024 Sep 5.
2
Markers of imminent myocardial infarction.即将发生心肌梗死的标志物。
Nat Cardiovasc Res. 2024 Feb;3(2):130-139. doi: 10.1038/s44161-024-00422-2. Epub 2024 Feb 12.

本文引用的文献

1
5
Genetics and breast cancer risk prediction--are we there yet?遗传学与乳腺癌风险预测——我们做到了吗?
J Natl Cancer Inst. 2010 Nov 3;102(21):1605-6. doi: 10.1093/jnci/djq413. Epub 2010 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验