Suppr超能文献

当病例只是嵌套病例对照研究中事件的一个子集时的新加权方法。

New weighting methods when cases are only a subset of events in a nested case-control study.

机构信息

Department of Mathematics and Statistics, Mississippi State University, Starkville, MS, USA.

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Biom J. 2022 Oct;64(7):1240-1259. doi: 10.1002/bimj.202100194. Epub 2022 Jun 26.

Abstract

Nested case control (NCC) is a sampling method widely used for developing and evaluating risk models with expensive biomarkers on large prospective cohort studies. In a typical NCC design, biomarker values are obtained on a subcohort, where cases consist of all the events (subjects who experience the event during the follow-up). However, when the number of events is not small, due to the cost and limited availability of biospecimen, one may select only a subset of events as cases. We refer to such a variation as the untypical NCC. Unfortunately, existing inverse probability weighted (IPW) estimators for the untypical NCC are biased, and they only focus on relative risk parameters under the proportional hazards (PH) model. In this manuscript, we propose new weighting methods that produce consistent IPW estimators for not only relative risk parameters but also several metrics that evaluate a risk model's predictive performance. We also provide the inference procedure via perturbation resampling, which captures all the variance and between-subject covariance induced by the sampling processes for both case and control selections. In addition, our methods are not limited to the PH model, and they can be applied to the time-specific generalized linear model. Under the typical NCC design, our new weights are equivalent to the weight proposed by Samuelsen; under the untypical NCC, the IPW estimators using our weights have smaller bias and variance than the existing methods. We will demonstrate this improved performance via both analytical and numerical investigations.

摘要

巢式病例对照(NCC)是一种广泛应用于大型前瞻性队列研究中开发和评估昂贵生物标志物风险模型的抽样方法。在典型的 NCC 设计中,生物标志物值是在子队列中获得的,其中病例由所有事件(在随访期间经历事件的受试者)组成。然而,当事件数量不多时,由于生物样本的成本和有限可用性,人们可能只选择一部分事件作为病例。我们将这种变化称为非典型 NCC。不幸的是,现有的非典型 NCC 的逆概率加权(IPW)估计器存在偏差,并且它们仅关注比例风险(PH)模型下的相对风险参数。在本文中,我们提出了新的加权方法,这些方法不仅为相对风险参数,而且为评估风险模型预测性能的几个指标提供了一致的 IPW 估计器。我们还通过扰动重采样提供了推断程序,该程序捕获了病例和对照选择过程中所有的方差和个体间协方差。此外,我们的方法不受 PH 模型的限制,它们可以应用于特定时间的广义线性模型。在典型的 NCC 设计中,我们的新权重等同于 Samuelsen 提出的权重;在非典型 NCC 中,使用我们的权重的 IPW 估计器的偏差和方差比现有方法更小。我们将通过分析和数值研究来证明这种改进的性能。

相似文献

5

本文引用的文献

10
Weighted analyses for cohort sampling designs.队列抽样设计的加权分析。
Lifetime Data Anal. 2009 Mar;15(1):24-40. doi: 10.1007/s10985-008-9095-z. Epub 2008 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验