Suppr超能文献

综合分析揭示了 Smc5/6 复合物的独特结构和功能特征。

Integrative analysis reveals unique structural and functional features of the Smc5/6 complex.

机构信息

Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.

Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.

出版信息

Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2026844118.

Abstract

Structural maintenance of chromosomes (SMC) complexes are critical chromatin modulators. In eukaryotes, the cohesin and condensin SMC complexes organize chromatin, while the Smc5/6 complex directly regulates DNA replication and repair. The molecular basis for the distinct functions of Smc5/6 is poorly understood. Here, we report an integrative structural study of the budding yeast Smc5/6 holo-complex using electron microscopy, cross-linking mass spectrometry, and computational modeling. We show that the Smc5/6 complex possesses several unique features, while sharing some architectural characteristics with other SMC complexes. In contrast to arm-folded structures of cohesin and condensin, Smc5 and Smc6 arm regions do not fold back on themselves. Instead, these long filamentous regions interact with subunits uniquely acquired by the Smc5/6 complex, namely the Nse2 SUMO ligase and the Nse5/Nse6 subcomplex, with the latter also serving as a linchpin connecting distal parts of the complex. Our 3.0-Å resolution cryoelectron microscopy structure of the Nse5/Nse6 core further reveals a clasped-hand topology and a dimeric interface important for cell growth. Finally, we provide evidence that Nse5/Nse6 uses its SUMO-binding motifs to contribute to Nse2-mediated sumoylation. Collectively, our integrative study identifies distinct structural features of the Smc5/6 complex and functional cooperation among its coevolved unique subunits.

摘要

染色体结构维持(SMC)复合物是关键的染色质调节剂。在真核生物中,黏合蛋白和凝聚蛋白 SMC 复合物组织染色质,而 Smc5/6 复合物直接调节 DNA 复制和修复。Smc5/6 功能的分子基础知之甚少。在这里,我们使用电子显微镜、交联质谱和计算建模对 budding yeast Smc5/6 全复合物进行了综合结构研究。我们表明,Smc5/6 复合物具有一些独特的特征,同时与其他 SMC 复合物共享一些结构特征。与黏合蛋白和凝聚蛋白的臂折叠结构不同,Smc5 和 Smc6 的臂区域不会自身折叠。相反,这些长丝状区域与 Smc5/6 复合物特有的亚基相互作用,即 Nse2 SUMO 连接酶和 Nse5/Nse6 亚复合物,后者还作为连接复合物远端部分的关键连接。我们的 3.0-Å 分辨率 cryo-electron microscopy 结构进一步揭示了 Nse5/Nse6 核心的扣状手拓扑结构和对细胞生长很重要的二聚体界面。最后,我们提供了证据表明 Nse5/Nse6 使用其 SUMO 结合基序来促进 Nse2 介导的 SUMO 化。总之,我们的综合研究确定了 Smc5/6 复合物的独特结构特征和其共进化的独特亚基之间的功能协作。

相似文献

1
Integrative analysis reveals unique structural and functional features of the Smc5/6 complex.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2026844118.
3
Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA substrate binding.
EMBO J. 2021 Aug 2;40(15):e107807. doi: 10.15252/embj.2021107807. Epub 2021 Jun 30.
4
Cryo-EM structures of Smc5/6 in multiple states reveal its assembly and functional mechanisms.
Nat Struct Mol Biol. 2024 Oct;31(10):1532-1542. doi: 10.1038/s41594-024-01319-1. Epub 2024 Jun 18.
5
During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks.
J Biol Chem. 2012 Mar 30;287(14):11374-83. doi: 10.1074/jbc.M111.336263. Epub 2012 Feb 2.
6
Molecular basis for Nse5-6 mediated regulation of Smc5/6 functions.
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2310924120. doi: 10.1073/pnas.2310924120. Epub 2023 Oct 30.
7
Cryo-EM structure of DNA-bound Smc5/6 reveals DNA clamping enabled by multi-subunit conformational changes.
Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2202799119. doi: 10.1073/pnas.2202799119. Epub 2022 Jun 1.
8
DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex.
EMBO J. 2018 Jun 15;37(12). doi: 10.15252/embj.201798306. Epub 2018 May 16.
9
Smc5/6, an atypical SMC complex with two RING-type subunits.
Biochem Soc Trans. 2020 Oct 30;48(5):2159-2171. doi: 10.1042/BST20200389.
10
The Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the KLEISIN, Nse4, and non-Kleisin subunits.
J Biol Chem. 2006 Dec 1;281(48):36952-9. doi: 10.1074/jbc.M608004200. Epub 2006 Sep 27.

引用本文的文献

1
SMC5/6-Mediated Plasmid Silencing is Directed by SIMC1-SLF2 and Antagonized by LT.
bioRxiv. 2025 Mar 28:2025.03.27.645818. doi: 10.1101/2025.03.27.645818.
2
Tutorial on integrative spatiotemporal modeling by integrative modeling platform.
Protein Sci. 2025 Apr;34(4):e70107. doi: 10.1002/pro.70107.
3
Frontiers in integrative structural modeling of macromolecular assemblies.
QRB Discov. 2025 Jan 22;6:e3. doi: 10.1017/qrd.2024.15. eCollection 2025.
4
Cryo-EM structures of Smc5/6 in multiple states reveal its assembly and functional mechanisms.
Nat Struct Mol Biol. 2024 Oct;31(10):1532-1542. doi: 10.1038/s41594-024-01319-1. Epub 2024 Jun 18.
5
NFATC2IP is a mediator of SUMO-dependent genome integrity.
Genes Dev. 2024 Apr 17;38(5-6):233-252. doi: 10.1101/gad.350914.123.
7
The SMC5/6 complex: folding chromosomes back into shape when genomes take a break.
Nucleic Acids Res. 2024 Mar 21;52(5):2112-2129. doi: 10.1093/nar/gkae103.
8
SMC5/6 Promotes Replication Fork Stability via Negative Regulation of the COP9 Signalosome.
Int J Mol Sci. 2024 Jan 12;25(2):952. doi: 10.3390/ijms25020952.
9
Plays Independent Roles in Congenital Heart Disease and Neurodevelopmental Disability.
Int J Mol Sci. 2023 Dec 28;25(1):430. doi: 10.3390/ijms25010430.
10
Molecular basis for Nse5-6 mediated regulation of Smc5/6 functions.
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2310924120. doi: 10.1073/pnas.2310924120. Epub 2023 Oct 30.

本文引用的文献

2
Structure Basis for Shaping the Nse4 Protein by the Nse1 and Nse3 Dimer within the Smc5/6 Complex.
J Mol Biol. 2021 Apr 30;433(9):166910. doi: 10.1016/j.jmb.2021.166910. Epub 2021 Mar 4.
3
SUMO is a pervasive regulator of meiosis.
Elife. 2021 Jan 27;10:e57720. doi: 10.7554/eLife.57720.
4
Esc2 orchestrates substrate-specific sumoylation by acting as a SUMO E2 cofactor in genome maintenance.
Genes Dev. 2021 Feb 1;35(3-4):261-272. doi: 10.1101/gad.344739.120. Epub 2021 Jan 14.
5
Purified Smc5/6 Complex Exhibits DNA Substrate Recognition and Compaction.
Mol Cell. 2020 Dec 17;80(6):1039-1054.e6. doi: 10.1016/j.molcel.2020.11.012. Epub 2020 Dec 9.
6
The Smc5/6 Core Complex Is a Structure-Specific DNA Binding and Compacting Machine.
Mol Cell. 2020 Dec 17;80(6):1025-1038.e5. doi: 10.1016/j.molcel.2020.11.011. Epub 2020 Dec 9.
7
Using Integrative Modeling Platform to compute, validate, and archive a model of a protein complex structure.
Protein Sci. 2021 Jan;30(1):250-261. doi: 10.1002/pro.3995. Epub 2020 Dec 3.
8
Smc5/6, an atypical SMC complex with two RING-type subunits.
Biochem Soc Trans. 2020 Oct 30;48(5):2159-2171. doi: 10.1042/BST20200389.
9
Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism.
Nat Struct Mol Biol. 2020 Aug;27(8):743-751. doi: 10.1038/s41594-020-0457-x. Epub 2020 Jul 13.
10
Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA.
Mol Cell. 2020 Jul 2;79(1):99-114.e9. doi: 10.1016/j.molcel.2020.04.026. Epub 2020 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验