Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065.
Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065.
Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2202799119. doi: 10.1073/pnas.2202799119. Epub 2022 Jun 1.
Structural maintenance of chromosomes (SMC) complexes are essential for chromatin organization and functions throughout the cell cycle. The cohesin and condensin SMCs fold and tether DNA, while Smc5/6 directly promotes DNA replication and repair. The functions of SMCs rely on their abilities to engage DNA, but how Smc5/6 binds and translocates on DNA remains largely unknown. Here, we present a 3.8 Å cryogenic electron microscopy (cryo-EM) structure of DNA-bound Saccharomyces cerevisiae Smc5/6 complex containing five of its core subunits, including Smc5, Smc6, and the Nse1-3-4 subcomplex. Intricate interactions among these subunits support the formation of a clamp that encircles the DNA double helix. The positively charged inner surface of the clamp contacts DNA in a nonsequence-specific manner involving numerous DNA binding residues from four subunits. The DNA duplex is held up by Smc5 and 6 head regions and positioned between their coiled-coil arm regions, reflecting an engaged-head and open-arm configuration. The Nse3 subunit secures the DNA from above, while the hook-shaped Nse4 kleisin forms a scaffold connecting DNA and all other subunits. The Smc5/6 DNA clamp shares similarities with DNA-clamps formed by other SMCs but also exhibits differences that reflect its unique functions. Mapping cross-linking mass spectrometry data derived from DNA-free Smc5/6 to the DNA-bound Smc5/6 structure identifies multi-subunit conformational changes that enable DNA capture. Finally, mutational data from cells reveal distinct DNA binding contributions from each subunit to Smc5/6 chromatin association and cell fitness. In summary, our integrative study illuminates how a unique SMC complex engages DNA in supporting genome regulation.
染色体结构维持(SMC)复合物对于整个细胞周期中的染色质组织和功能至关重要。黏合蛋白和凝聚素 SMC 折叠并固定 DNA,而 Smc5/6 直接促进 DNA 复制和修复。SMC 的功能依赖于其与 DNA 结合的能力,但 Smc5/6 如何结合和在 DNA 上迁移仍在很大程度上未知。在这里,我们展示了含有其五个核心亚基的结合 DNA 的酿酒酵母 Smc5/6 复合物的 3.8Å 冷冻电镜(cryo-EM)结构,包括 Smc5、Smc6 和 Nse1-3-4 亚复合物。这些亚基之间复杂的相互作用支持形成一个夹,环绕 DNA 双螺旋。夹的带正电荷的内表面以涉及来自四个亚基的许多 DNA 结合残基的非序列特异性方式与 DNA 接触。DNA 双链由 Smc5 和 6 头部区域支撑,并定位在它们的螺旋卷曲臂区域之间,反映了一个结合头部和开放臂的构型。Nse3 亚基从上方固定 DNA,而钩状的 Nse4 黏合亚基形成一个连接 DNA 和所有其他亚基的支架。Smc5/6 DNA 夹与其他 SMC 形成的 DNA 夹具有相似性,但也表现出差异,反映了其独特的功能。将源自无 DNA 的 Smc5/6 的交联质谱数据映射到结合 DNA 的 Smc5/6 结构上,确定了使 DNA 捕获成为可能的多亚基构象变化。最后,来自细胞的突变数据揭示了每个亚基对 Smc5/6 染色质结合和细胞适应性的独特 DNA 结合贡献。总之,我们的综合研究阐明了一个独特的 SMC 复合物如何与 DNA 相互作用以支持基因组调控。