Suppr超能文献

大分子组装体的整合结构建模前沿

Frontiers in integrative structural modeling of macromolecular assemblies.

作者信息

Majila Kartik, Arvindekar Shreyas, Jindal Muskaan, Viswanath Shruthi

机构信息

National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.

出版信息

QRB Discov. 2025 Jan 22;6:e3. doi: 10.1017/qrd.2024.15. eCollection 2025.

Abstract

Integrative modeling enables structure determination for large macromolecular assemblies by combining data from multiple experiments with theoretical and computational predictions. Recent advancements in AI-based structure prediction and cryo electron-microscopy have sparked renewed enthusiasm for integrative modeling; structures from AI-based methods can be integrated with maps to characterize large assemblies. This approach previously allowed us and others to determine the architectures of diverse macromolecular assemblies, such as nuclear pore complexes, chromatin remodelers, and cell-cell junctions. Experimental data spanning several scales was used in these studies, ranging from high-resolution data, such as X-ray crystallography and AlphaFold structure, to low-resolution data, such as cryo-electron tomography maps and data from co-immunoprecipitation experiments. Two recurrent modeling challenges emerged across a range of studies. First, these assemblies contained significant fractions of disordered regions, necessitating the development of new methods for modeling disordered regions in the context of ordered regions. Second, methods needed to be developed to utilize the information from cryo-electron tomography, a timely challenge as structural biology is increasingly moving towards characterization. Here, we recapitulate recent developments in the modeling of disordered proteins and the analysis of cryo-electron tomography data and highlight other opportunities for method development in the context of integrative modeling.

摘要

整合建模通过将来自多个实验的数据与理论和计算预测相结合,能够确定大型大分子组装体的结构。基于人工智能的结构预测和冷冻电子显微镜的最新进展激发了人们对整合建模的新热情;基于人工智能方法得到的结构可以与图谱整合,以表征大型组装体。这种方法此前使我们和其他人能够确定各种大分子组装体的结构,如核孔复合体、染色质重塑剂和细胞间连接。这些研究使用了跨越几个尺度的实验数据,从高分辨率数据,如X射线晶体学和AlphaFold结构,到低分辨率数据,如冷冻电子断层扫描图谱和来自免疫共沉淀实验的数据。在一系列研究中出现了两个反复出现的建模挑战。首先,这些组装体包含相当一部分无序区域,因此需要开发在有序区域背景下对无序区域进行建模的新方法。其次,需要开发利用冷冻电子断层扫描信息的方法,随着结构生物学越来越倾向于表征,这是一个紧迫的挑战。在这里,我们总结了无序蛋白质建模和冷冻电子断层扫描数据分析的最新进展,并强调了在整合建模背景下方法开发的其他机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验