Am J Epidemiol. 2021 Sep 1;190(9):1948-1960. doi: 10.1093/aje/kwab124.
Evaluating gene by environment (G × E) interaction under an additive risk model (i.e., additive interaction) has gained wider attention. Recently, statistical tests have been proposed for detecting additive interaction, utilizing an assumption on gene-environment (G-E) independence to boost power, that do not rely on restrictive genetic models such as dominant or recessive models. However, a major limitation of these methods is a sharp increase in type I error when this assumption is violated. Our goal was to develop a robust test for additive G × E interaction under the trend effect of genotype, applying an empirical Bayes-type shrinkage estimator of the relative excess risk due to interaction. The proposed method uses a set of constraints to impose the trend effect of genotype and builds an estimator that data-adaptively shrinks an estimator of relative excess risk due to interaction obtained under a general model for G-E dependence using a retrospective likelihood framework. Numerical study under varying levels of departures from G-E independence shows that the proposed method is robust against the violation of the independence assumption while providing an adequate balance between bias and efficiency compared with existing methods. We applied the proposed method to the genetic data of Alzheimer disease and lung cancer.
评估加性风险模型(即加性交互作用)下的基因与环境(G×E)相互作用受到了更广泛的关注。最近,提出了一些统计检验方法来检测加性交互作用,这些方法利用了基因-环境(G-E)独立性的假设来提高功效,而不依赖于显性或隐性等限制性遗传模型。然而,这些方法的一个主要局限性是,当违反该假设时,I 型错误率会急剧增加。我们的目标是在基因型趋势效应下开发一种稳健的加性 G×E 交互作用检验方法,应用交互作用的相对超额风险的经验 Bayes 型收缩估计。该方法使用一组约束条件来施加基因型的趋势效应,并构建一个估计器,该估计器使用回顾性似然框架,根据 G-E 相关性的一般模型,自适应地收缩在交互作用的一般模型下获得的相对超额风险的估计器。在不同程度偏离 G-E 独立性的数值研究表明,与现有方法相比,该方法在违反独立性假设时具有稳健性,同时在偏差和效率之间提供了适当的平衡。我们将提出的方法应用于阿尔茨海默病和肺癌的遗传数据。