Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, MA, USA.
Genet Epidemiol. 2013 May;37(4):402-7. doi: 10.1002/gepi.21713. Epub 2013 Mar 13.
The case-only test has been proposed as a more powerful approach to detect gene-environment (G × E) interactions. This approach assumes that the genetic and environmental factors are independent. Although it is well known that Type I error rate will increase if this assumption is violated, it is less widely appreciated that G × E correlation can also lead to power loss. We illustrate this phenomenon by comparing the performance of the case-only test to other approaches to detect G × E interactions in a genome-wide association study (GWAS) of esophageal squamous-cell carcinoma (ESCC) in Chinese populations. Some of these approaches do not use information on the correlation between exposure and genotype (standard logistic regression), whereas others seek to use this information in a robust fashion to boost power without increasing Type I error (two-step, empirical Bayes, and cocktail methods). G × E interactions were identified involving drinking status and two regions containing genes in the alcohol metabolism pathway, 4q23 and 12q24. Although the case-only test yielded the most significant tests of G × E interaction in the 4q23 region, the case-only test failed to identify significant interactions in the 12q24 region which were readily identified using other approaches. The low power of the case-only test in the 12q24 region is likely due to the strong inverse association between the single nucleotide polymorphism (SNPs) in this region and drinking status. This example underscores the need to consider multiple approaches to detect G × E interactions, as different tests are more or less sensitive to different alternative hypotheses and violations of the G × E independence assumption.
病例对照研究已被提出作为一种更强大的方法来检测基因-环境(G×E)相互作用。这种方法假设遗传和环境因素是独立的。尽管众所周知,如果违反了这个假设,I 型错误率将会增加,但人们不太了解的是,G×E 相关性也会导致功效损失。我们通过比较病例对照研究与其他方法在检测中国人群食管鳞癌(ESCC)全基因组关联研究(GWAS)中的 G×E 相互作用的性能,来说明这种现象。其中一些方法不使用暴露与基因型之间的相关性信息(标准逻辑回归),而其他方法则试图以稳健的方式利用这种信息来提高功效,而不会增加 I 型错误(两步法、经验贝叶斯法和鸡尾酒法)。确定了与饮酒状态和包含在酒精代谢途径中的两个基因区域(4q23 和 12q24)有关的 G×E 相互作用。虽然病例对照研究在 4q23 区域产生了最显著的 G×E 相互作用检验,但病例对照研究未能识别出 12q24 区域的显著相互作用,而其他方法则很容易识别出这些相互作用。病例对照研究在 12q24 区域的功效较低可能是由于该区域的单核苷酸多态性(SNP)与饮酒状态之间存在强烈的负相关关系。这个例子强调了需要考虑多种方法来检测 G×E 相互作用,因为不同的检验对不同的替代假设和 G×E 独立性假设的违反程度更为敏感。