Suppr超能文献

基于基因-环境独立性的病例对照研究中加性基因-环境交互作用的稳健检验

Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence.

机构信息

Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan.

Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.

出版信息

Am J Epidemiol. 2018 Feb 1;187(2):366-377. doi: 10.1093/aje/kwx243.

Abstract

There have been recent proposals advocating the use of additive gene-environment interaction instead of the widely used multiplicative scale, as a more relevant public health measure. Using gene-environment independence enhances statistical power for testing multiplicative interaction in case-control studies. However, under departure from this assumption, substantial bias in the estimates and inflated type I error in the corresponding tests can occur. In this paper, we extend the empirical Bayes (EB) approach previously developed for multiplicative interaction, which trades off between bias and efficiency in a data-adaptive way, to the additive scale. An EB estimator of the relative excess risk due to interaction is derived, and the corresponding Wald test is proposed with a general regression setting under a retrospective likelihood framework. We study the impact of gene-environment association on the resultant test with case-control data. Our simulation studies suggest that the EB approach uses the gene-environment independence assumption in a data-adaptive way and provides a gain in power compared with the standard logistic regression analysis and better control of type I error when compared with the analysis assuming gene-environment independence. We illustrate the methods with data from the Ovarian Cancer Association Consortium.

摘要

最近有人提议,采用加性基因-环境交互作用(additive gene-environment interaction),而不是广泛使用的乘法尺度(multiplicative scale),作为更相关的公共卫生措施。使用基因-环境独立性(gene-environment independence)可以提高病例对照研究中检测乘法交互作用的统计功效。然而,在偏离这种假设的情况下,估计值会出现实质性偏差,相应检验的Ⅰ型错误率也会增加。本文将先前针对乘法交互作用开发的经验贝叶斯(empirical Bayes,EB)方法扩展到加性尺度。该方法以数据自适应的方式在偏差和效率之间进行权衡,为交互作用产生的相对超额风险(relative excess risk due to interaction)推导出了一个 EB 估计量,并提出了相应的 Wald 检验,检验在回顾性似然框架下采用一般回归设置。我们研究了病例对照数据中基因-环境关联对检验结果的影响。我们的模拟研究表明,EB 方法以数据自适应的方式使用基因-环境独立性假设,并与标准的逻辑回归分析相比提供了更大的功效增益,与假设基因-环境独立性的分析相比,更好地控制了Ⅰ型错误率。我们用卵巢癌协会联盟(Ovarian Cancer Association Consortium)的数据说明了这些方法。

相似文献

引用本文的文献

3
Impact of Gene-Environment Interactions on Cancer Development.基因-环境相互作用对癌症发展的影响。
Int J Environ Res Public Health. 2020 Nov 3;17(21):8089. doi: 10.3390/ijerph17218089.

本文引用的文献

6
Sample Size and Power Calculations for Additive Interactions.加性相互作用的样本量和效能计算
Epidemiol Methods. 2012 Aug 1;1(1):159-188. doi: 10.1515/2161-962X.1010.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验