From the Breast Cancer Unit, Department of Radiology, Hospital Universitario Reina Sofía, Av Menéndez Pidal s/n, Córdoba 14004, Spain (J.L.R.P., S.R.M., E.E.C., M.Á.B.); Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain (J.L.R.P., S.R.M., E.E.C., M.Á.B.); and Department of Clinical Science, ScreenPoint Medical, Nijmegen, the Netherlands (A.G.M., A.R.R.).
Radiology. 2021 Jul;300(1):57-65. doi: 10.1148/radiol.2021203555. Epub 2021 May 4.
Background The workflow of breast cancer screening programs could be improved given the high workload and the high number of false-positive and false-negative assessments. Purpose To evaluate if using an artificial intelligence (AI) system could reduce workload without reducing cancer detection in breast cancer screening with digital mammography (DM) or digital breast tomosynthesis (DBT). Materials and Methods Consecutive screening-paired and independently read DM and DBT images acquired from January 2015 to December 2016 were retrospectively collected from the Córdoba Tomosynthesis Screening Trial. The original reading settings were single or double reading of DM or DBT images. An AI system computed a cancer risk score for DM and DBT examinations independently. Each original setting was compared with a simulated autonomous AI triaging strategy (the least suspicious examinations for AI are not human-read; the rest are read in the same setting as the original, and examinations not recalled by radiologists but graded as very suspicious by AI are recalled) in terms of workload, sensitivity, and recall rate. The McNemar test with Bonferroni correction was used for statistical analysis. Results A total of 15 987 DM and DBT examinations (which included 98 screening-detected and 15 interval cancers) from 15 986 women (mean age ± standard deviation, 58 years ± 6) were evaluated. In comparison with double reading of DBT images (568 hours needed, 92 of 113 cancers detected, 706 recalls in 15 987 examinations), AI with DBT would result in 72.5% less workload ( < .001, 156 hours needed), noninferior sensitivity (95 of 113 cancers detected, = .38), and 16.7% lower recall rate ( < .001, 588 recalls in 15 987 examinations). Similar results were obtained for AI with DM. In comparison with the original double reading of DM images (222 hours needed, 76 of 113 cancers detected, 807 recalls in 15 987 examinations), AI with DBT would result in 29.7% less workload ( < .001), 25.0% higher sensitivity ( < .001), and 27.1% lower recall rate ( < .001). Conclusion Digital mammography and digital breast tomosynthesis screening strategies based on artificial intelligence systems could reduce workload up to 70%. Published under a CC BY 4.0 license.
鉴于工作量大,假阳性和假阴性评估数量多,乳腺癌筛查项目的工作流程可以得到改善。目的:评估使用人工智能(AI)系统是否可以在使用数字乳腺 X 线摄影(DM)或数字乳腺断层合成术(DBT)进行乳腺癌筛查时减少工作量而不降低癌症检出率。材料与方法:回顾性收集了 2015 年 1 月至 2016 年 12 月期间从科尔多瓦断层合成术筛查试验中获得的连续筛查配对和独立阅读的 DM 和 DBT 图像。原始阅读设置为单独或双重阅读 DM 或 DBT 图像。AI 系统为 DM 和 DBT 检查独立计算癌症风险评分。根据工作量、敏感性和召回率,将每个原始设置与模拟自主 AI 分诊策略(AI 认为最可疑的检查不进行人工阅读;其余的按照与原始相同的设置进行阅读,并且未被放射科医生召回但被 AI 评为高度可疑的检查被召回)进行比较。采用校正后的 McNemar 检验进行统计学分析。结果:共评估了来自 15986 名女性(平均年龄±标准差,58 岁±6 岁)的 15987 例 DM 和 DBT 检查(包括 98 例筛查发现和 15 例间隔期癌症)。与双重阅读 DBT 图像相比(568 小时,113 例癌症中 92 例检出,15987 次检查中 706 次召回),AI 用于 DBT 将减少 72.5%的工作量(<0.001,156 小时),非劣效性敏感性(113 例癌症中 95 例检出,=0.38)和 16.7%的召回率较低(<0.001,15987 次检查中 588 次召回)。AI 用于 DM 也得到了类似的结果。与原始的 DM 图像双重阅读相比(222 小时,113 例癌症中 76 例检出,15987 次检查中 807 次召回),AI 用于 DBT 将减少 29.7%的工作量(<0.001),25.0%的敏感性提高(<0.001)和 27.1%的召回率较低(<0.001)。结论:基于人工智能系统的数字乳腺 X 线摄影和数字乳腺断层合成术筛查策略可以减少多达 70%的工作量。根据知识共享署名 4.0 国际许可协议发布。