Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland.
Curr Protoc. 2021 May;1(5):e108. doi: 10.1002/cpz1.108.
The preparation of controlled pore glass (CPG) supports, functionalized with several hexaethylene glycol spacers, to alleviate the problems associated with the porosity of commercial CPG supports is described in this article. The pore size of CPG restricts the diffusion of reagents to the leader nucleoside embedded in porous supports; this inhibits efficient solid-phase syntheses of DNA and RNA sequences and, by default, the purity of those sequences through formation of a shorter than full-length oligonucleotide. Functionalization of a CPG support with five hexaethylene glycol spacers led to a 42% reduction in process-related impurities contaminating oligonucleotide sequences, compared to that obtained using the commercial long-chain alkylamine (LCAA) CPG support. © 2021 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Preparation of the hydroxylated CPG support 3 Basic Protocol 2: Automated preparation of the CPG support 6 Basic Protocol 3: Automated preparation of the poly(hexaethylene glycol)-derived CPG 7 Basic Protocol 4: Automated functionalization of the poly(hexaethylene glycol)-derived CPG support 7 with leader deoxyribo- and ribonucleosides to provide the CPG support 9 Basic Protocol 5: Automated syntheses of DNA and RNA sequences on poly(hexaethylene glycol)-derived CPG support 9 and on a commercial long-chain alkylamine (LCAA) CPG support Support Protocol: Release and deprotection of the DNA and RNA sequences linked to the poly(hexaethylene glycol)-derived CPG support 10 and commercial LCAA-CPG support Basic Protocol 6: Comparative RP-HPLC analyses of crude, fully deprotected DNA or RNA sequences released from the poly(hexaethylene glycol)-derived CPG support 10 and from a commercial LCAA-CPG support.
本文介绍了一种制备具有多个六亚乙基二醇间隔臂的可控孔径玻璃(CPG)载体的方法,以缓解商业 CPG 载体孔隙率带来的问题。CPG 的孔径限制了试剂向嵌入多孔载体的先导核苷的扩散;这会抑制 DNA 和 RNA 序列的有效固相合成,并且默认情况下,由于形成短于全长的寡核苷酸,这些序列的纯度也会受到影响。用 5 个六亚乙基二醇间隔臂对 CPG 载体进行功能化,与使用商业长链烷基胺(LCAA)CPG 载体相比,可将与寡核苷酸序列相关的杂质减少 42%。© 2021 Wiley Periodicals LLC. 本文的撰写工作由美国政府雇员完成,其作品在美国属于公有领域。 基本方案 1:制备羟基化 CPG 载体 3 基本方案 2:CPG 载体的自动化制备 6 基本方案 3:聚(六亚乙基二醇)衍生 CPG 的自动化制备 7 基本方案 4:聚(六亚乙基二醇)衍生 CPG 支持物的自动化衍生化 7 用先导脱氧核糖和核糖核苷提供 CPG 支持物 9 基本方案 5:在聚(六亚乙基二醇)衍生 CPG 支持物和商业长链烷基胺(LCAA)CPG 支持物上自动合成 DNA 和 RNA 序列 9 支持方案:从聚(六亚乙基二醇)衍生的 CPG 支持物和商业 LCAA-CPG 支持物上释放和脱保护连接的 DNA 和 RNA 序列 10 基本方案 6:从聚(六亚乙基二醇)衍生的 CPG 支持物 10 和商业 LCAA-CPG 支持物上释放的粗制、完全脱保护的 DNA 或 RNA 序列的比较反相高效液相色谱分析