Suppr超能文献

生存在共生体沃尔巴克氏体的世界中:百年综述。

Living in the endosymbiotic world of Wolbachia: A centennial review.

机构信息

Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.

Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Cell Host Microbe. 2021 Jun 9;29(6):879-893. doi: 10.1016/j.chom.2021.03.006. Epub 2021 May 3.

Abstract

The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.

摘要

在动物王国中,最广泛存在的细胞内细菌是母系遗传的共生菌属沃尔巴克氏体。它们在全球节肢动物和线虫中的普遍存在,以及令人惊叹的寄生和共生适应能力,使这些细菌成为共生基本研究的生物学原型,以及抑制人类和农业疾病的应用成果。在这里,我们对生活在沃尔巴克氏体世界进行了总结性的百年分析。我们综合了关于沃尔巴克氏体宿主范围、系统发育多样性、基因组学、细胞生物学以及在丝虫、虫媒病毒和农业疾病中应用的文献。我们还回顾了沃尔巴克氏体的可移动基因组,包括噬菌体 WO 及其对节肢动物标志性生殖表型的必要性。最后,沃尔巴克氏体系统是一个基于发现的科学教育的典范,使用生物多样性、生物技术和生物信息学课程。随着我们接近沃尔巴克氏体研究的一个世纪,这种共生关系的跨学科科学为巩固和教授内共生生命的综合规则提供了一个模型。

相似文献

1
Living in the endosymbiotic world of Wolbachia: A centennial review.
Cell Host Microbe. 2021 Jun 9;29(6):879-893. doi: 10.1016/j.chom.2021.03.006. Epub 2021 May 3.
2
Discovery of a new Wolbachia supergroup in cave spider species and the lateral transfer of phage WO among distant hosts.
Infect Genet Evol. 2016 Jul;41:1-7. doi: 10.1016/j.meegid.2016.03.015. Epub 2016 Mar 18.
3
Phage WO of Wolbachia: lambda of the endosymbiont world.
Trends Microbiol. 2010 Apr;18(4):173-81. doi: 10.1016/j.tim.2009.12.011. Epub 2010 Jan 18.
4
Wolbachia: endosymbiont of onchocercid nematodes and their vectors.
Parasit Vectors. 2021 May 7;14(1):245. doi: 10.1186/s13071-021-04742-1.
5
Bacteriophage WO in Wolbachia infecting terrestrial isopods.
Biochem Biophys Res Commun. 2005 Nov 18;337(2):580-5. doi: 10.1016/j.bbrc.2005.09.091. Epub 2005 Sep 22.
6
Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility.
PLoS One. 2011;6(12):e29106. doi: 10.1371/journal.pone.0029106. Epub 2011 Dec 15.
7
The Wolbachia mobilome in Culex pipiens includes a putative plasmid.
Nat Commun. 2019 Mar 5;10(1):1051. doi: 10.1038/s41467-019-08973-w.
8
Wolbachia: master manipulators of invertebrate biology.
Nat Rev Microbiol. 2008 Oct;6(10):741-51. doi: 10.1038/nrmicro1969.
9
Microbe Profile: Wolbachia: a sex selector, a viral protector and a target to treat filarial nematodes.
Microbiology (Reading). 2018 Nov;164(11):1345-1347. doi: 10.1099/mic.0.000724. Epub 2018 Oct 12.
10
Evolutionary Genetics of Cytoplasmic Incompatibility Genes cifA and cifB in Prophage WO of Wolbachia.
Genome Biol Evol. 2018 Feb 1;10(2):434-451. doi: 10.1093/gbe/evy012.

引用本文的文献

2
What lurks in the dark? An innovative framework for studying diverse wild insect microbiota.
Microbiome. 2025 Aug 12;13(1):186. doi: 10.1186/s40168-025-02169-9.
3
Counting cytoplasmic incompatibility factor mRNA using digital droplet PCR.
bioRxiv. 2025 Jul 30:2025.07.30.667682. doi: 10.1101/2025.07.30.667682.
5
Reciprocal Host- Interactions Shape Infection Persistence Upon Loss of Cytoplasmic Incompatibility in Haplodiploids.
Evol Appl. 2025 Jul 23;18(7):e70138. doi: 10.1111/eva.70138. eCollection 2025 Jul.
6
Leveraging microbial ecology for mosquito-borne disease control.
Trends Parasitol. 2025 Aug;41(8):670-684. doi: 10.1016/j.pt.2025.06.010. Epub 2025 Jul 17.
7
Comprehensive review of Wolbachia research (1936-2024): Global landscape, mapping progress and themes.
Parasite Epidemiol Control. 2025 Jun 10;30:e00438. doi: 10.1016/j.parepi.2025.e00438. eCollection 2025 Aug.
8
-mediated parthenogenesis induction in the aphid hyperparasitoid (Hymenoptera: Figitidae: Charipinae).
bioRxiv. 2025 Jun 30:2025.06.30.662338. doi: 10.1101/2025.06.30.662338.
10

本文引用的文献

1
Forward genetics in Wolbachia: Regulation of Wolbachia proliferation by the amplification and deletion of an addictive genomic island.
PLoS Genet. 2021 Jun 18;17(6):e1009612. doi: 10.1371/journal.pgen.1009612. eCollection 2021 Jun.
3
and Virus Alter the Host Transcriptome at the Interface of Nucleotide Metabolism Pathways.
mBio. 2021 Feb 9;12(1):e03472-20. doi: 10.1128/mBio.03472-20.
4
A Review: -Borne Arboviral Infections, Controls and Based Strategies.
Vaccines (Basel). 2021 Jan 8;9(1):32. doi: 10.3390/vaccines9010032.
5
Large scale genome reconstructions illuminate Wolbachia evolution.
Nat Commun. 2020 Oct 16;11(1):5235. doi: 10.1038/s41467-020-19016-0.
6
Stable Introduction of Plant-Virus-Inhibiting Wolbachia into Planthoppers for Rice Protection.
Curr Biol. 2020 Dec 21;30(24):4837-4845.e5. doi: 10.1016/j.cub.2020.09.033. Epub 2020 Oct 8.
8
Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years?
Elife. 2020 Sep 25;9:e61989. doi: 10.7554/eLife.61989.
9
Inhibits Binding of Dengue and Zika Viruses to Mosquito Cells.
Front Microbiol. 2020 Aug 4;11:1750. doi: 10.3389/fmicb.2020.01750. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验