Suppr超能文献

大脑如何对抗脂肪酸的毒性。

How the brain fights fatty acids' toxicity.

机构信息

Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.

Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.

出版信息

Neurochem Int. 2021 Sep;148:105050. doi: 10.1016/j.neuint.2021.105050. Epub 2021 May 1.

Abstract

Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).

摘要

神经元排斥富含氢的脂肪酸来进行氧化磷酸化 ATP 合成,这与其他细胞不同。这一特性主要归因于每减少一个氧分子产生的 ATP 产量较低,与葡萄糖相比。此外,脂肪酸作为氢供体的使用伴随着严重的β-氧化相关 ROS 生成。由于神经元抗氧化设备较差,因此特别容易受到 ROS 的有害活性的影响。还需要注意的是,游离脂肪酸 (FFA) 会在细胞内引发多种有害活动,特别是在磷酸化线粒体上。几种过程增强了大脑组织中与 FFA 相关的脂肪毒性。因此,当身体的能量摄入和能量消耗之间失衡时,FFA 会从循环中进入脑组织,这种情况类似于代谢综合征和高脂肪饮食期间的情况。创伤性或缺氧性脑损伤会增加膜磷脂的水解降解,从而增加神经细胞中 FFA 的水平。FFA 在脑组织中的积累与某些遗传性神经疾病明显相关,例如 Refsum 病或 X 连锁肾上腺脑白质营养不良 (X-ALD)。有哪些策略可以保护神经元免受 FFA 相关的脂肪毒性?首先,排斥神经元线粒体中的β-氧化途径。其次,基于神经元和星形胶质细胞之间紧密的代谢通讯,星形胶质细胞为神经元提供代谢物来合成抗氧化剂。此外,神经元自噬 ROS 发射线粒体与降解承诺 FFA 的转移相结合,用于在星形胶质细胞中处理它们,是一种针对 ROS 和 FFA 有害活性的有效保护策略。最后,雌激素和神经甾体是保护性的,因为它们是 ERK 和 PKB 信号通路的触发因素,从而通过形成 cAMP 反应元件结合蛋白 (CREB) 启动各种神经元存活基因的表达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验