Suppr超能文献

快速微观分数各向异性成像通过优化的线性回归公式。

Rapid microscopic fractional anisotropy imaging via an optimized linear regression formulation.

机构信息

Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.

Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Canada.

出版信息

Magn Reson Imaging. 2021 Jul;80:132-143. doi: 10.1016/j.mri.2021.04.015. Epub 2021 May 1.

Abstract

Water diffusion anisotropy in the human brain is affected by disease, trauma, and development. Microscopic fractional anisotropy (μFA) is a diffusion MRI (dMRI) metric that can quantify water diffusion anisotropy independent of neuron fiber orientation dispersion. However, there are several different techniques to estimate μFA and few have demonstrated full brain imaging capabilities within clinically viable scan times and resolutions. Here, we present an optimized spherical tensor encoding (STE) technique to acquire μFA directly from the 2nd order cumulant expansion of the powder averaged dMRI signal obtained from direct linear regression (i.e. diffusion kurtosis) which requires fewer powder-averaged signals than other STE fitting techniques and can be rapidly computed. We found that the optimal dMRI parameters for white matter μFA imaging were a maximum b-value of 2000 s/mm and a ratio of STE to LTE tensor encoded acquisitions of 1.7 for our system specifications. We then compared two implementations of the direct regression approach to the well-established gamma model in 4 healthy volunteers on a 3 Tesla system. One implementation used mean diffusivity (D) obtained from a 2nd order fit of the cumulant expansion, while the other used a linear estimation of D from the low b-values. Both implementations of the direct regression approach showed strong linear correlations with the gamma model (ρ = 0.97 and ρ = 0.90) but mean biases of -0.11 and - 0.02 relative to the gamma model were also observed, respectively. All three μFA measurements showed good test-retest reliability (ρ ≥ 0.79 and bias = 0). To demonstrate the potential scan time advantage of the direct approach, 2 mm isotropic resolution μFA was demonstrated over a 10 cm slab using a subsampled data set with fewer powder-averaged signals that would correspond to a 3.3-min scan. Accordingly, our results introduce an optimization procedure that has enabled nearly full brain μFA in only several minutes.

摘要

人类大脑中的水扩散各向异性受疾病、创伤和发育的影响。微观分数各向异性(μFA)是一种扩散 MRI(dMRI)指标,可定量测量水扩散各向异性,而与神经元纤维方向分散无关。然而,有几种不同的技术来估计μFA,并且很少有技术能够在临床可行的扫描时间和分辨率内实现全脑成像。在这里,我们提出了一种优化的球张量编码(STE)技术,从通过直接线性回归(即扩散峰度)获得的粉末平均 dMRI 信号的二阶累积展开中直接获取μFA,该技术需要的粉末平均信号比其他 STE 拟合技术少,并且可以快速计算。我们发现,对于我们的系统规格,用于白质μFA 成像的最佳 dMRI 参数是最大 b 值为 2000 s/mm,STE 与 LTE 张量编码采集的比值为 1.7。然后,我们在 3T 系统上比较了两种直接回归方法在 4 名健康志愿者中的应用与成熟的伽马模型的比较。一种实现方法是使用二阶累积展开的二次拟合来获得平均扩散系数(D),而另一种实现方法是使用低 b 值的线性估计 D。直接回归方法的两种实现都与伽马模型呈很强的线性相关性(ρ=0.97 和 ρ=0.90),但相对于伽马模型,也观察到平均偏差为-0.11 和-0.02。所有三种μFA 测量值均表现出良好的测试 - 重测可靠性(ρ≥0.79,偏差=0)。为了证明直接方法的潜在扫描时间优势,在使用较少粉末平均信号的子采样数据集上,在 10cm 厚的切片上演示了 2mm 各向同性分辨率μFA,这对应于 3.3 分钟的扫描。因此,我们的结果引入了一种优化程序,该程序仅用几分钟就实现了几乎全脑μFA。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验