Suppr超能文献

珊瑚状核壳结构NiS/NiS@PPy@MoS纳米线的合成及其微波吸收性能

Synthesis and microwave absorption properties of coralloid core-shell structure NiS/NiS@PPy@MoS nanowires.

作者信息

Huang Weibo, Tong Zhouyu, Bi Yuxin, Ma Mingliang, Liao Zijian, Wu Guanglei, Ma Yong, Guo Siyu, Jiang Xiaoyu, Liu Xueping

机构信息

School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, People's Republic of China.

School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, People's Republic of China.

出版信息

J Colloid Interface Sci. 2021 Oct;599:262-270. doi: 10.1016/j.jcis.2021.04.107. Epub 2021 Apr 24.

Abstract

Herein, coralloid core-shell structure NiS/NiS@PPy@MoS nanowires were elaborately designed and successfully synthesized through a three-step route to obtain exceptional microwave absorption (MA) properties. Ni nanowires were first fabricated, and then used as the substrate to be coated with a layer of PPy. Ni chalcogenides were obtained by using Ni nanowire as sacrificial templates while growing MoS nanorods by hydrothermal method. Both the one-dimensional (1D) core-shell structure and the coralloid surface generated by MoS nanorods were beneficial for the attenuation of microwaves. After investigating the electromagnetic properties of different loading content absorbers (30 wt.%, 40 wt.% and 50 wt.%), it is found that the 50 wt.% loading absorber has the optimal MA performance. The minimum reflection loss (RL) value can reach -51.29 dB at 10.1 GHz with a thickness of 2.29 mm, and the corresponding effective absorption bandwidth (EAB, RL < -10 dB) can be up to 3.24 GHz. This research provides a reference for exploiting novel high-efficient 1D absorbers in the field of MA.

摘要

在此,通过三步路线精心设计并成功合成了珊瑚状核壳结构的NiS/NiS@PPy@MoS纳米线,以获得优异的微波吸收(MA)性能。首先制备了镍纳米线,然后将其用作基底,在其上包覆一层聚吡咯。以镍纳米线为牺牲模板,通过水热法生长二硫化钼纳米棒,从而得到镍硫族化合物。一维核壳结构以及二硫化钼纳米棒形成的珊瑚状表面均有利于微波的衰减。在研究了不同负载量(30 wt.%、40 wt.%和50 wt.%)吸收剂的电磁性能后,发现负载量为50 wt.%的吸收剂具有最佳的微波吸收性能。在厚度为2.29 mm时,最小反射损耗(RL)值在10.1 GHz可达-51.29 dB,相应的有效吸收带宽(EAB,RL < -10 dB)可达3.24 GHz。本研究为在微波吸收领域开发新型高效一维吸收剂提供了参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验