Suppr超能文献

源自金属有机框架的二维CoZn/C@MoS@PPy复合材料的微波吸收增强

Microwave absorption enhancement of 2-dimensional CoZn/C@MoS@PPy composites derived from metal-organic framework.

作者信息

Bi Yuxin, Ma Mingliang, Liu Yanyan, Tong Zhouyu, Wang Rongzhen, Chung Kwok L, Ma Aijie, Wu Guanglei, Ma Yong, He Changpeng, Liu Pan, Hu Luying

机构信息

School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, People's Republic of China.

School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, People's Republic of China.

出版信息

J Colloid Interface Sci. 2021 Oct 15;600:209-218. doi: 10.1016/j.jcis.2021.04.137. Epub 2021 Apr 30.

Abstract

Metal-organic framework (MOF) materials have caused widespread concerns in the field of microwave absorption, due to the unique microstructure and electronic state. Herein, the CoZn/C@MoS@polypyrrole (PPy) composites were prepared through MOF self-template method. The MoS sheets and PPy shell incorporated for optimizing impedance matching of two-dimensional (2D) CoZn/C composites. The introduction of MoS sheets and PPy shell endowed the composites with enhanced microwave absorption. The as-prepared CoZn/C@MoS@PPy composites showed a minimum reflection loss (RL) of -49.18 dB with the thickness of 1.5 mm. In addition, the effective absorption bandwidth (EAB, RL values exceeding -10 dB) covered 4.56 GHz, which showed greater performances than CoZn/C composites under a lower thickness (<2 mm). This work not only provides a facile route for fabricating MOF-derived carbon-based composites as microwave absorbers, but also broadens the application of MOF materials.

摘要

金属有机框架(MOF)材料因其独特的微观结构和电子态而在微波吸收领域引起了广泛关注。在此,通过MOF自模板法制备了CoZn/C@MoS@聚吡咯(PPy)复合材料。引入MoS片层和PPy壳层以优化二维(2D)CoZn/C复合材料的阻抗匹配。MoS片层和PPy壳层的引入赋予了复合材料增强的微波吸收性能。所制备的CoZn/C@MoS@PPy复合材料在厚度为1.5 mm时显示出-49.18 dB的最小反射损耗(RL)。此外,有效吸收带宽(EAB,RL值超过-10 dB)覆盖4.56 GHz,在较低厚度(<2 mm)下表现出比CoZn/C复合材料更好的性能。这项工作不仅为制备MOF衍生的碳基复合材料作为微波吸收剂提供了一条简便的途径,而且拓宽了MOF材料的应用范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验