Departamento de Mejora Genética Animal, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain.
Genetics and Genomics, The Roslin Institute and R(D)SVS of the University of Edinburgh, Midlothian EH25 9RG, Roslin, UK.
Genes (Basel). 2021 Apr 29;12(5):673. doi: 10.3390/genes12050673.
A main objective in conservation programs is to maintain genetic variability. This can be achieved using the Optimal Contributions (OC) method that optimizes the contributions of candidates to the next generation by minimizing the global coancestry. However, it has been argued that maintaining allele frequencies is also important. Different genomic coancestry matrices can be used on OC and the choice of the matrix will have an impact not only on the genetic variability maintained, but also on the change in allele frequencies. The objective of this study was to evaluate, through stochastic simulations, the genetic variability maintained and the trajectory of allele frequencies when using two different genomic coancestry matrices in OC to minimize the loss of diversity: (i) the matrix based on deviations of the observed number of alleles shared between two individuals from the expected numbers under Hardy-Weinberg equilibrium (); and (ii) the matrix based on VanRaden's genomic relationship matrix (). The results indicate that the use of resulted in a higher genetic variability than the use of . However, the use of maintained allele frequencies closer to those in the base population than the use of .
保护计划的主要目标之一是保持遗传多样性。这可以通过最优贡献 (OC) 方法来实现,该方法通过最小化全局亲缘关系来优化候选者对下一代的贡献。然而,有人认为保持等位基因频率也很重要。不同的基因组亲缘关系矩阵可以用于 OC,矩阵的选择不仅会影响所保持的遗传多样性,还会影响等位基因频率的变化。本研究通过随机模拟评估了在 OC 中使用两种不同的基因组亲缘关系矩阵来最小化多样性损失时所保持的遗传多样性和等位基因频率的轨迹:(i)基于个体间观察到的等位基因共享数量与 Hardy-Weinberg 平衡下预期数量之间的偏差的矩阵();(ii)基于 VanRaden 的基因组关系矩阵()。结果表明,使用 导致的遗传多样性高于使用 。然而,使用 保持的等位基因频率比使用 更接近基础群体中的等位基因频率。