Zhang Bokai, Li Jian, Hu Juanmei, Liu Lei
Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Department of Physics and Electronic Engineering, Heze University, Heze 274015, China.
Soft Matter. 2021 May 5;17(17):4632-4642. doi: 10.1039/d1sm00226k.
The dynamics of polymer-nanoparticle (NP) mixtures, which involves multiple scales and system-specific variables, has posed a long-standing challenge on its theoretical description. In this paper, we construct a microscopic theory for polymer diffusion in mixtures based on a combination of the generalized Langevin equation, mode-coupling approach, and polymer physics ideas. The parameter-free theory has an explicit expression and remains tractable on a pair correlation level with system-specific equilibrium structures as input. Taking a minimal polymer-NP mixture as an example, our theory correctly captures the dependence of polymer diffusion on NP concentration and average interparticle distance. Importantly, the polymer diffusion exhibits a power law decay as the polymer length increases at dense NPs and/or a long chain, which marks the emergence of entanglement-like motion. The work provides a first-principles theoretical foundation to investigate dynamic problems in diverse polymer nanocomposites.
聚合物-纳米颗粒(NP)混合物的动力学涉及多个尺度和系统特定变量,这对其理论描述构成了长期挑战。在本文中,我们基于广义朗之万方程、模式耦合方法和聚合物物理思想的结合,构建了一种用于聚合物在混合物中扩散的微观理论。该无参数理论具有明确的表达式,并且在以系统特定平衡结构作为输入的对关联水平上仍然易于处理。以最小的聚合物-NP混合物为例,我们的理论正确地捕捉了聚合物扩散对NP浓度和平均粒子间距离的依赖性。重要的是,在密集的NP和/或长链情况下,随着聚合物长度的增加,聚合物扩散呈现幂律衰减,这标志着类似缠结运动的出现。这项工作为研究各种聚合物纳米复合材料中的动力学问题提供了第一性原理理论基础。